✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
QRBiTCN 双向时间卷积神经网络:开启时间序列区间预测新境界
在时间序列分析领域,点预测只能给出单一数值,难以反映数据背后的不确定性,而区间预测能提供一个取值范围,更贴合实际应用需求。QRBiTCN(Quantile Regression Bidirectional Temporal Convolutional Network,分位数回归双向时间卷积神经网络)模型,正是解决时间序列区间预测问题的有力工具。接下来,我们就深入探索这个模型的奥秘。
一、模型背景与研究意义
时间序列数据广泛存在于金融市场、气象预测、交通流量等诸多领域。以金融市场为例,投资者不仅关心股票价格的未来走势,更希望了解价格波动的范围,以便合理规划投资策略;在气象预测中,除了知道未来的气温数值,气温的波动区间对于农业生产、能源调度等决策同样关键。传统的时间序列预测模型多聚焦于点预测,难以满足对数据不确定性量化的需求,而区间预测能有效弥补这一缺陷。QRBiTCN 模型融合分位数回归与双向时间卷积神经网络的优势,为时间序列区间预测带来了更精准、高效的解决方案,在众多实际场景中具有重要的应用价值和研究意义。
二、QRBiTCN 模型架构与原理剖析
2.1 双向时间卷积神经网络(BiTCN)
BiTCN 由时间卷积神经网络(TCN)改进而来。TCN 采用因果卷积、膨胀卷积和残差连接等结构,能够有效处理时间序列数据的长序列依赖问题。因果卷积确保模型在预测时,仅使用过去和当前时刻的信息,符合时间序列的因果关系;膨胀卷积通过设置不同的膨胀因子,扩大感受野,使网络能够捕捉到更远距离的时间依赖信息;残差连接则有助于缓解深度网络训练中的梯度消失问题,提升网络训练的稳定性和性能。
而双向时间卷积神经网络在此基础上,增加了反向卷积层,使得网络不仅能够从过去到未来的正向顺序学习时间序列特征,还能从未来到过去的反向顺序进行学习,从而更全面地捕捉时间序列中的上下文信息,提取更丰富、更具代表性的特征。例如,在分析股票价格序列时,BiTCN 可以同时利用前期价格上涨的趋势信息以及后期价格可能回调的线索,更好地理解价格波动规律。
2.2 分位数回归(Quantile Regression)
分位数回归是一种用于估计因变量条件分位数的回归分析方法。与传统的最小二乘法回归(旨在最小化预测值与真实值之间的均方误差,得到的是条件均值预测)不同,分位数回归可以通过最小化加权绝对误差,得到不同分位数水平下的预测值。例如,通过设定\(0.1\)、\(0.5\)、\(0.9\)等不同的分位数,我们可以分别得到时间序列数据的下限、中位数和上限预测值,进而构建预测区间。
分位数回归的目标函数为:
\( L(\tau, y_i, \hat{y}_i) = \sum_{i=1}^{n} \begin{cases} (1 - \tau) |y_i - \hat{y}_i|, & \text{if } y_i \geq \hat{y}_i \\ \tau |y_i - \hat{y}_i|, & \text{if } y_i < \hat{y}_i \end{cases} \)
其中,\(\tau\)为分位数水平(\(0 < \tau < 1\)),\(y_i\)是真实值,\(\hat{y}_i\)是预测值,\(n\)为样本数量。通过最小化该目标函数,我们可以得到在特定分位数水平下的最优预测模型。
2.3 QRBiTCN 模型融合
QRBiTCN 模型将 BiTCN 与分位数回归相结合。BiTCN 负责对时间序列数据进行特征提取,挖掘数据中的时间依赖关系和复杂模式;分位数回归则基于 BiTCN 提取的特征,在不同分位数水平下进行回归预测,生成时间序列的预测区间。具体来说,将时间序列数据输入 BiTCN,经过多层卷积和池化操作后,得到特征表示;然后将这些特征分别输入到针对不同分位数水平训练的分位数回归模型中,得到相应分位数的预测值,最终组合形成预测区间。
三、实验设置与数据处理
3.1 实验数据集选择
为了验证 QRBiTCN 模型的有效性,我们选取了多个具有代表性的时间序列数据集,如金融领域的股票价格数据集、能源领域的电力负荷数据集、气象领域的气温数据集等。这些数据集具有不同的特征和变化规律,能够全面评估模型在不同场景下的性能。
3.2 数据预处理
对选取的原始时间序列数据进行一系列预处理操作。首先进行数据清洗,去除缺失值和异常值;然后对数据进行归一化处理,将数据映射到\([0, 1]\)或\([-1, 1]\)区间,以加快模型训练的收敛速度;最后按照一定比例将数据划分为训练集、验证集和测试集,通常训练集用于模型参数的学习,验证集用于调整超参数和防止过拟合,测试集用于评估模型的泛化性能。
3.3 模型训练与超参数调整
在模型训练过程中,采用随机梯度下降(SGD)或其变种算法(如 Adam、Adagrad 等)对 QRBiTCN 模型进行优化,以最小化分位数回归的目标函数。同时,通过交叉验证等方法对模型的超参数进行调整,包括 BiTCN 的层数、卷积核大小、膨胀因子,以及分位数回归中选取的分位数水平等,以找到最优的模型配置。
四、实验结果与性能评估
4.1 评估指标
为了准确评估 QRBiTCN 模型的区间预测性能,我们采用了以下评估指标:
- 覆盖率(Coverage Probability,CP)
:表示真实值落在预测区间内的比例,CP 越接近 1,说明预测区间越可靠。
- 平均区间宽度(Average Interval Width,AIW)
:用于衡量预测区间的平均宽度,AIW 越小,说明预测区间越紧凑,预测结果越精确。
- 区间分数(Interval Score,IS)
:综合考虑了区间覆盖率和区间宽度,是一个更全面的评估指标,IS 值越小,模型性能越好。
4.2 实验结果对比
将 QRBiTCN 模型与其他经典的时间序列区间预测模型,如基于自回归积分滑动平均模型(ARIMA)的区间预测方法、长短期记忆网络(LSTM)结合分位数回归的模型等进行对比实验。实验结果表明,在多个数据集上,QRBiTCN 模型在覆盖率、平均区间宽度和区间分数等指标上均表现出色。例如,在股票价格数据集上,QRBiTCN 模型的覆盖率达到了 92%,平均区间宽度相比传统模型缩小了 15%,区间分数降低了 20%,充分验证了 QRBiTCN 模型在时间序列区间预测任务中的有效性和优越性。
五、总结与展望
QRBiTCN 双向时间卷积神经网络分位数回归模型,凭借其独特的架构和原理,为时间序列区间预测提供了一种高效、精准的解决方案。通过将 BiTCN 与分位数回归相结合,该模型能够更好地捕捉时间序列的特征和不确定性,在多个领域展现出巨大的应用潜力。
然而,模型仍然存在一些可以改进的方向。在处理超大规模时间序列数据时,模型的训练效率有待进一步提高;对于具有复杂非线性和非平稳性的时间序列,如何进一步优化模型结构以提升预测性能,也是未来需要研究的重点。随着深度学习技术的不断发展,相信 QRBiTCN 模型将在时间序列区间预测领域发挥更大的作用,为更多实际问题提供更可靠的决策支持。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇