✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对倾转旋翼无人机在连续状态空间下的控制问题,提出基于深度确定性策略梯度(DDPG)算法的控制方案。通过分析倾转旋翼无人机的动力学特性,构建连续状态空间模型,详细阐述 DDPG 算法在无人机控制中的应用过程。利用仿真实验对所提控制策略进行验证,结果表明该策略能够有效实现倾转旋翼无人机在连续状态空间中的稳定控制,在轨迹跟踪、姿态调整等任务中表现良好,为无人机的智能控制提供了新的有效途径。
关键词
倾转旋翼无人机;深度强化学习;深度确定性策略梯度;连续状态空间;无人机控制
一、引言
1.1 研究背景
倾转旋翼无人机结合了直升机垂直起降和固定翼飞机高速巡航的优点,在军事侦察、物资投递、航空摄影等领域具有广泛的应用前景 。然而,倾转旋翼无人机独特的结构和复杂的动力学特性,使其在飞行控制方面面临诸多挑战,尤其是在连续状态空间下实现精确、稳定的控制难度较大 。传统的无人机控制方法,如 PID 控制、线性二次型调节器(LQR)等,依赖于精确的数学模型,在处理复杂非线性和不确定性问题时存在局限性 。
随着深度学习和强化学习技术的快速发展,深度强化学习在机器人控制、自动驾驶等领域展现出强大的能力 。深度确定性策略梯度(DDPG)算法作为一种适用于连续动作空间的深度强化学习算法,为解决倾转旋翼无人机在连续状态空间下的控制问题提供了新的思路 。将 DDPG 算法应用于倾转旋翼无人机控制,有望实现更智能、高效的控制策略。
1.2 研究现状
目前,国内外学者在无人机控制领域开展了大量研究 。在传统控制方法方面,PID 控制以其结构简单、易于实现等特点,在无人机控制中得到广泛应用,但对于复杂动态环境适应性较差 。基于模型的控制方法,如 LQR、模型预测控制(MPC)等,通过建立精确的无人机动力学模型实现控制,但模型参数的准确性难以保证 。
在深度强化学习应用于无人机控制的研究中,部分学者采用深度 Q 网络(DQN)及其改进算法实现无人机的离散动作控制 ,但离散动作空间难以满足无人机在连续状态空间下精细控制的需求 。近年来,一些研究尝试将 DDPG 算法应用于无人机控制,但针对倾转旋翼无人机在连续状态空间下的控制研究相对较少,仍有较大的研究空间。
1.3 研究目的与意义
本研究旨在将深度确定性策略梯度算法应用于倾转旋翼无人机在连续状态空间下的控制,设计有效的控制策略,提高无人机的控制精度和稳定性,增强其在复杂环境下的适应性 。研究成果将为倾转旋翼无人机的智能控制提供理论支持和技术方案,推动无人机技术在更多领域的应用和发展,具有重要的理论和实际意义。
二、倾转旋翼无人机动力学模型与连续状态空间构建
2.1 倾转旋翼无人机动力学模型
倾转旋翼无人机的动力学模型较为复杂,涉及多个自由度的运动 。建立其在惯性坐标系和机体坐标系下的动力学方程,包括平移运动方程和旋转运动方程 。考虑无人机的质量、转动惯量、气动力、气动力矩等因素,描述无人机的位置、速度、姿态和角速度随时间的变化关系 。例如,在平移运动方程中,根据牛顿第二定律,无人机在三个坐标轴方向上的合力等于质量与加速度的乘积;在旋转运动方程中,根据刚体转动定律,合力矩等于转动惯量与角加速度的乘积 。通过合理简化和假设,得到可用于控制研究的倾转旋翼无人机动力学模型。
三、深度确定性策略梯度(DDPG)算法原理
3.1 DDPG 算法基本框架
深度确定性策略梯度(DDPG)算法基于确定性策略梯度(DPG)理论,结合深度神经网络(DNN),适用于连续动作空间的强化学习任务 。DDPG 算法包含两个深度神经网络:Actor 网络和 Critic 网络 。Actor 网络根据当前状态输出确定性动作,用于控制无人机;Critic 网络根据当前状态和动作,评估动作的价值,为 Actor 网络提供反馈 。
此外,DDPG 算法还引入了目标网络机制,包括目标 Actor 网络和目标 Critic 网络 。目标网络的参数通过缓慢更新源网络参数的方式进行更新,有助于提高算法的稳定性和收敛性 。同时,采用经验回放机制,将智能体与环境交互产生的经验样本存储在经验池中,随机抽取样本进行训练,打破数据之间的相关性,提高学习效率 。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇