【PD控制】基于一维四旋翼机比例微分PD控制系统附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在当今科技飞速发展的时代,四旋翼机作为一种极具创新性的飞行器,正以其独特的优势在民用领域中崭露头角,发挥着越来越重要的作用。在航拍领域,四旋翼机凭借其灵活的机动性和稳定的悬停能力,能够轻松抵达传统拍摄设备难以触及的位置,为我们带来了全新的视觉体验,让我们从空中俯瞰世界,捕捉到那些令人惊叹的美景。在农业植保方面,四旋翼机可以搭载农药或肥料,按照预设的航线进行精准喷洒,大大提高了作业效率,减轻了农民的劳动强度,同时还能减少农药的浪费和对环境的污染。在快递运输领域,一些企业已经开始尝试使用四旋翼机进行短距离的快递配送,这种方式不仅能够提高配送效率,还能有效解决最后一公里的配送难题,为用户带来更加便捷的服务。在电力巡检领域,四旋翼机能够快速、准确地检测到电力线路的故障和隐患,及时为维修人员提供信息,保障了电力系统的安全稳定运行。

四旋翼机之所以能够在这些领域中得到广泛应用,离不开其先进的控制技术。控制技术就像是四旋翼机的大脑和神经系统,它能够实时感知飞行器的姿态、位置、速度等信息,并根据这些信息对飞行器进行精确的控制,使其能够按照预定的轨迹飞行,完成各种复杂的任务。随着科技的不断进步,人们对四旋翼机的自动化和智能化水平提出了更高的要求。例如,在一些复杂的环境中,如城市高楼林立的区域或山区等,四旋翼机需要能够自主规划飞行路径,避开障碍物,实现安全、高效的飞行。在执行任务时,四旋翼机需要能够根据环境的变化和任务的需求,自动调整飞行参数,提高任务的完成质量。而要实现这些目标,就需要不断改进和创新四旋翼机的控制技术。

在众多的控制技术中,比例微分(PD)控制以其独特的优势成为了四旋翼机控制领域中的重要方法之一。PD 控制是一种基于误差反馈的控制算法,它通过对系统输出与设定值之间的误差进行比例和微分运算,来调整控制器的输出,从而使系统能够快速、稳定地跟踪设定值。这种控制算法具有结构简单、易于实现、响应速度快等优点,能够有效地提高四旋翼机的控制精度和稳定性。例如,当四旋翼机在飞行过程中受到外界干扰,如风力的影响时,PD 控制能够迅速感知到飞行器的姿态变化,并通过调整旋翼的转速,使飞行器恢复到稳定的飞行状态。在四旋翼机进行轨迹跟踪时,PD 控制能够根据飞行器当前位置与目标位置之间的误差,快速调整飞行器的飞行方向和速度,使飞行器能够准确地跟踪目标轨迹。

PD 控制巧妙地将比例控制和微分控制的优势结合在一起,形成了一种更为强大和有效的控制策略。比例控制的快速响应特性使得系统能够对误差迅速做出反应,当四旋翼机出现高度误差时,比例控制能够立即根据误差的大小输出相应的控制信号,驱动电机调整转速,使四旋翼机朝着目标高度运动,快速纠正偏差。而微分控制则在系统的动态过程中发挥着关键作用,它能够根据误差的变化率来预测系统的变化趋势,提前对电机的转速进行调整,有效地抑制四旋翼机在接近目标高度时可能出现的超调和振荡现象,使系统更加稳定地达到目标状态。

在实际的四旋翼机飞行控制中,PD 控制的协同运作能够带来出色的控制效果。当四旋翼机需要从当前高度快速上升到目标高度时,比例控制会因为较大的高度误差而输出一个较大的控制信号,使电机迅速提高转速,产生强大的升力,推动四旋翼机快速上升。在上升过程中,微分控制会时刻监测高度误差的变化率。如果发现四旋翼机上升速度过快,误差变化率过大,微分控制会输出一个反向的信号,适当降低电机的转速增加的幅度,避免四旋翼机因为上升速度过快而超过目标高度,出现超调现象。当四旋翼机接近目标高度时,比例控制的输出会随着误差的减小而逐渐减小,使四旋翼机的上升速度逐渐放缓;同时,微分控制会更加敏锐地捕捉误差变化率的细微变化,及时调整电机转速,确保四旋翼机能够平稳地停在目标高度上,并且保持稳定,不会出现明显的振荡 。

PD 控制通过比例控制和微分控制的协同工作,实现了对四旋翼机高度的精确控制,使四旋翼机能够在各种复杂的飞行条件下,快速、稳定地达到并保持在目标高度,为四旋翼机在民用领域的广泛应用提供了坚实的技术支持。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值