✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球能源转型与可持续发展的大背景下,分布式能源的广泛接入促使配电网向更加复杂、多元的方向发展。多微电网系统作为分布式能源高效利用的重要载体,在提升能源利用效率、增强供电可靠性等方面发挥着关键作用。然而,微电网中分布式电源出力的间歇性与波动性,给配电网的稳定运行带来了挑战。引入租赁共享储能机制,并借助博弈论进行优化调度,成为解决这一问题的有效途径,为配电网的高效、可靠运行开辟了新的思路。
多微电网与租赁共享储能概述
1. 多微电网系统架构与特性
多微电网系统由多个相对独立又相互关联的微电网构成,每个微电网包含分布式电源(如光伏、风电、微型燃气轮机等)、负荷以及必要的能量转换和控制装置。这些微电网既可以与配电网并网运行,从主网获取电能或向主网输送多余电能;在特定情况下,也能脱离主网孤岛运行,保障重要负荷的持续供电。多微电网系统具有分布式、灵活性高的特点,能够就地消纳分布式能源,减少传输损耗,提高能源利用效率。但分布式电源受自然条件(如光照、风速)影响,出力呈现明显的间歇性和波动性,导致微电网内功率平衡难以维持,这对配电网的稳定运行构成潜在威胁。
2. 租赁共享储能的优势与运作模式
租赁共享储能是一种创新的储能应用模式,多个微电网通过租赁的方式共同使用共享储能设施。与各微电网独立配置储能相比,租赁共享储能具有显著优势。一方面,降低了单个微电网的储能建设成本,尤其是对于一些规模较小、资金有限的微电网而言,无需投入大量资金建设储能系统,只需支付相对较低的租赁费用,就能获得储能服务,提高了储能资源的利用效率。另一方面,共享储能能够在多个微电网之间进行灵活调配,根据各微电网的实时功率需求,动态调整储能的充放电策略,更好地应对分布式电源的功率波动,增强整个多微电网系统的稳定性和可靠性。在运作模式上,通常由专业的储能运营商建设和管理共享储能设施,微电网根据自身需求与储能运营商签订租赁协议,按使用量或使用时长支付费用。
博弈论在多微电网配电网调度中的应用
1. 博弈模型构建
在含多微电网租赁共享储能的配电网中,存在多个利益主体,包括配电网运营商、微电网运营商以及储能运营商,他们之间的决策相互影响。构建博弈模型时,以各主体的利益最大化为目标。例如,配电网运营商旨在最小化购电成本、降低网损,并确保电网安全稳定运行;微电网运营商希望在满足自身负荷需求的前提下,最大化利用分布式电源,降低从配电网购电的费用;储能运营商则追求租赁收益最大化。通过定义各主体的策略空间(如微电网的功率调度策略、储能的充放电策略等)以及收益函数,建立起多主体的博弈模型。以双层主从博弈模型为例,上层博弈以微电网群为主体、多个微电网为从体,下层博弈以配电网为主体、微电网群和共享储能运营商为从体。各主体在博弈过程中,根据其他主体的策略调整自己的策略,以实现自身利益最优。
2. 博弈求解算法
为求解复杂的博弈模型,采用合适的算法至关重要。常见的算法包括纳什均衡求解算法、粒子群优化算法、遗传算法等。以纳什均衡求解算法为例,该算法通过寻找一组策略组合,使得在其他主体策略不变的情况下,每个主体都无法通过单方面改变自己的策略来提高自身收益。在实际应用中,结合多微电网配电网的特点,对算法进行优化和改进。例如,利用分布式计算技术,将复杂的计算任务分配到各个微电网和配电网的边缘计算节点上,提高计算效率;引入自适应参数调整机制,根据博弈过程中的实时情况,动态调整算法参数,加快收敛速度,确保能够快速、准确地找到博弈的最优解。
基于租赁共享储能的多微电网配电网优化调度策略
1. 考虑储能租赁成本的功率分配策略
在优化调度过程中,充分考虑储能租赁成本对微电网功率分配的影响。微电网在制定功率调度计划时,不仅要考虑自身分布式电源的出力和负荷需求,还要权衡从配电网购电的成本以及使用共享储能的租赁成本。当分布式电源出力充足且储能租赁成本较低时,微电网可适当增加储能的充电量,将多余电能储存起来,以减少在用电高峰时段从配电网的购电量;当分布式电源出力不足且从配电网购电成本较高时,微电网则可利用租赁的储能进行放电,满足自身负荷需求。通过建立精确的成本模型,结合实时电价信息和储能租赁价格,运用优化算法求解出微电网在不同时段的最优功率分配方案,实现成本最小化。
2. 共享储能的协同充放电策略
为充分发挥共享储能的优势,制定协同充放电策略。在多微电网系统中,根据各微电网的实时功率状态以及预测的功率变化趋势,对共享储能进行统一调度。当部分微电网出现功率盈余,而其他微电网存在功率缺额时,协调共享储能在功率盈余的微电网处充电,然后在功率缺额的微电网处放电,实现储能资源在多个微电网之间的优化配置。同时,考虑到配电网的运行约束,如电压限制、线路容量限制等,避免因共享储能的充放电导致配电网出现过载或电压越限等问题。通过实时监测和动态调整,确保共享储能与多微电网之间的协同运行,提高整个系统的稳定性和可靠性。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇