✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代生活中,噪声宛如一个如影随形的 “不速之客”,对我们的生活、工作和健康造成了诸多负面影响。从城市中川流不息的交通,到工厂里机器的轰鸣,再到建筑工地上的施工声响,噪声污染几乎无处不在。
噪声对生活的干扰显而易见。在宁静的夜晚,本应是人们放松身心、进入甜美梦乡的时刻,然而,窗外的汽车声、广场舞的音乐声,却常常打破这份宁静,让人难以入眠。长期睡眠不足不仅会让人在第二天感到疲倦、无精打采,还会影响身体的免疫力,增加患病的风险。在日常生活中,当我们与家人朋友相聚,享受温馨时光时,周围的嘈杂噪声也可能让我们无法畅快地交流,破坏美好的氛围。
在工作环境中,噪声同样是一个令人头疼的问题。对于办公室职员来说,打印机的嗡嗡声、同事的讨论声,可能会分散他们的注意力,导致工作效率下降。而对于工厂工人而言,长期暴露在高强度的噪声环境中,不仅会影响工作的准确性,还可能对他们的身体健康造成严重威胁。研究表明,长期接触噪声会对人体的听觉系统产生损害,导致听力下降,甚至引发噪声性耳聋。
除了对听觉系统的影响,噪声还会对人体的其他系统产生不良影响。长期处于噪声环境中,会使人产生焦虑、烦躁、抑郁等不良情绪,影响心理健康。噪声还会干扰人体的内分泌系统,导致激素失衡,进而影响身体的正常代谢。噪声还可能引发心血管疾病,增加心脏病和中风的发病风险。
面对噪声带来的诸多危害,人们一直在寻求有效的解决办法。主动噪声控制(ANC)技术应运而生,成为了应对噪声挑战的有力武器。ANC 技术基于声波的干涉原理,通过产生与原始噪声相位相反的声波,使其与原始噪声相互抵消,从而达到降低噪声的目的。而 FxLMS 算法作为 ANC 技术中的关键算法,在宽带和窄带主动噪声控制中发挥着重要作用。接下来,就让我们一起深入了解 FxLMS 算法的奥秘,探寻它是如何在噪声控制领域大显身手的。
ANC 技术:主动出击的降噪先锋
(一)ANC 技术的降噪原理
ANC 技术的核心原理基于声波的干涉现象。当两个声波相遇时,如果它们的相位相反,且振幅相等,就会发生相互抵消的现象,从而达到降低噪声的目的。具体来说,ANC 系统会通过传感器(通常是麦克风)采集周围环境中的噪声信号,然后将这些信号传输给控制器。控制器根据接收到的噪声信号,生成与之相位相反的声波信号,即反相声波。最后,通过扬声器将反相声波播放出来,使其与原始噪声在空气中相遇并相互抵消,从而实现降噪的效果。
为了更直观地理解这一原理,我们可以参考声波抵消的示意图(图 1)。在图中,蓝色曲线表示原始噪声的声波,红色曲线表示 ANC 系统生成的反相声波。可以看到,当这两个声波相遇时,它们的波峰和波谷相互对应,相互抵消,最终在合成声波(绿色曲线)中,噪声的强度得到了显著降低。
更换图片
图 1:声波抵消的示意图
(二)ANC 系统的构成与工作流程
一个典型的 ANC 系统主要由参考传感器、自适应滤波器、次级声源、误差传感器等部分组成。各部分的功能及工作流程如下:
- 参考传感器:通常为麦克风,负责采集环境中的原始噪声信号,将其转换为电信号后传输给自适应滤波器。这就好比 ANC 系统的 “耳朵”,通过它来感知外界的噪声情况。
- 自适应滤波器:这是 ANC 系统的核心部分,它根据参考传感器传来的噪声信号,利用特定的算法(如 FxLMS 算法)生成相应的控制信号。自适应滤波器就像是 ANC 系统的 “大脑”,它能够根据噪声的变化实时调整自身的参数,以确保生成的控制信号能够有效地抵消噪声。
- 次级声源:一般为扬声器,根据自适应滤波器输出的控制信号,发出与原始噪声相位相反的声波,即反相声波。它是 ANC 系统实现降噪的 “执行者”,通过发出反相声波来与原始噪声进行对抗。
- 误差传感器:同样由麦克风构成,用于采集经过降噪处理后残余的噪声信号,并将其反馈给自适应滤波器。误差传感器就像是 ANC 系统的 “监督者”,通过它反馈的信息,自适应滤波器可以了解降噪的效果,并进一步调整自身的参数,以达到更好的降噪效果。
ANC 系统的工作流程可以简单概括为:参考传感器采集原始噪声信号,自适应滤波器根据该信号生成控制信号,控制信号驱动次级声源发出反相声波,反相声波与原始噪声相互抵消,误差传感器采集残余噪声信号并反馈给自适应滤波器,自适应滤波器根据反馈信息调整自身参数,如此循环往复,不断优化降噪效果。
(三)宽带与窄带噪声的特点与区别
在噪声控制领域,宽带噪声和窄带噪声是两种常见的噪声类型,它们具有不同的特点和频谱特性。
- 宽带噪声:其频谱范围较宽,能量分布相对均匀,包含了多个频率成分。例如,白噪声就是一种典型的宽带噪声,它在整个可听频率范围内(20Hz - 20kHz)具有相等的能量密度。在实际生活中,交通噪声、空调噪声等通常都属于宽带噪声。这些噪声的频率成分复杂多样,听起来比较嘈杂,给人一种 “嗡嗡” 的感觉。由于宽带噪声的频率范围广,要对其进行有效的控制,需要考虑多个频率段的噪声特性,这增加了噪声控制的难度。
- 窄带噪声:与宽带噪声相反,窄带噪声的频谱范围较窄,能量集中在特定的频率附近。例如,电机的电磁噪声、变压器的嗡嗡声等,往往是由于特定频率的振动产生的,属于窄带噪声。窄带噪声的频率成分相对单一,听起来比较尖锐,容易引起人们的注意。虽然窄带噪声的频率范围较窄,但由于其能量集中,在某些情况下,对人的干扰可能更为明显。
通过对宽带噪声和窄带噪声特点与区别的了解,我们可以根据不同类型噪声的特性,选择合适的噪声控制方法和算法,以达到更好的降噪效果。在后续的内容中,我们将详细介绍 FxLMS 算法在宽带和窄带主动噪声控制中的应用。
FxLMS 算法:ANC 系统的智慧大脑
(一)FxLMS 算法的基本原理
FxLMS(Filtered-x Least Mean Squares)算法,即滤波 x 最小均方算法,是在 LMS(Least Mean Square)算法的基础上发展而来的,专门用于主动噪声控制系统中。LMS 算法是一种经典的自适应滤波算法,其基本思想是通过不断调整滤波器的系数,使得滤波器的输出与期望信号之间的误差最小化,通常采用均方误差(Mean Square Error,MSE)作为衡量标准 。在 ANC 系统中,LMS 算法试图通过调整滤波器系数,使次级声源产生的反相声波与原始噪声相互抵消,从而达到降噪的目的。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇