✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
本研究聚焦综合能源系统中弹性电价、可平移及可削减三种需求侧响应方式,分析其运行机制、实施策略及协同效应。通过阐述各响应方式在调节能源供需平衡、提升系统灵活性方面的作用,探讨面临的挑战与发展趋势,旨在为综合能源系统的高效运行与可持续发展提供理论支持与实践参考。
一、引言
随着全球能源结构向清洁化、低碳化转型,综合能源系统整合电力、热力、天然气等多种能源形式,成为提升能源利用效率的重要载体。然而,可再生能源的间歇性与波动性,以及用户用能需求的不确定性,给系统的稳定运行带来挑战。需求侧响应(Demand Response,DR)通过引导用户调整用能行为,实现能源供需的灵活匹配,成为综合能源系统优化运行的关键手段。其中,弹性电价、可平移及可削减等多种需求侧响应方式相互配合,为系统运行提供了更多可能性。
二、弹性电价需求侧响应
(一)基本原理
弹性电价需求侧响应基于价格信号对用户用能行为的调节作用。通过实时或分时调整电价,反映能源供应成本与系统供需状况。当能源供应紧张、发电成本上升时,提高电价,激励用户减少用电;当能源供应充足时,降低电价,引导用户增加用电。例如,在电力高峰时段,电价上调,用户会主动减少非必要用电设备的使用;在夜间低谷时段,电价降低,用户可选择运行电热水器、洗衣机等大功率电器,实现用电负荷的错峰调节 。
(二)实施策略
- 实时电价:依据实时的发电成本、电网负荷等数据,动态更新电价。用户通过智能电表实时获取电价信息,自主调整用电行为。但该模式对计量、通信和信息处理系统要求较高。
- 分时电价:将一天划分为峰、平、谷等不同时段,制定差异化电价。如高峰时段电价较高,低谷时段电价较低,引导用户养成错峰用电习惯。这种方式简单易懂,便于用户接受,在实际应用中较为广泛 。
- 阶梯电价:根据用户用电量的不同区间设定阶梯式电价。用电量越高,单位电价越高,鼓励用户节约用电,同时保障居民基本用电需求。
(三)应用效果
弹性电价需求侧响应能够有效平衡能源供需。在电力系统中,可降低高峰负荷,减少发电设备的投资与运行成本;提升低谷负荷,提高发电设备的利用率。同时,激励用户参与能源管理,增强节能意识,促进能源的合理消费 。
三、可平移需求侧响应
(一)基本原理
可平移需求侧响应针对具有一定时间灵活性的用电设备或用能过程,在不影响用户基本用能需求的前提下,将其用电时段在一定范围内进行平移。例如,工业生产中的部分加工环节、商业建筑中的非关键设备运行,以及居民生活中的家电使用等,均可通过合理安排,实现用电负荷的平移 。
(二)实施策略
- 提前通知与协商:能源供应商提前向用户发布可平移响应通知,告知响应时段与激励措施。用户根据自身生产生活安排,与供应商协商确定可平移的用电设备及时段。
- 智能控制与调度:借助智能电网与物联网技术,对可平移用电设备进行远程控制与调度。通过设定设备的运行时间区间,实现用电负荷的自动平移,减少人工干预,提高响应效率 。
(三)应用效果
可平移需求侧响应能有效平滑负荷曲线,降低系统峰谷差。在综合能源系统中,减轻发电与输配电设备的压力,提高设备利用效率;优化能源资源配置,促进可再生能源的消纳,减少能源浪费 。
四、可削减需求侧响应
(一)基本原理
可削减需求侧响应是指在能源供应紧张或系统出现故障时,用户按照约定暂时削减部分非必要用电负荷,保障系统的稳定运行。这些可削减的负荷通常包括工业生产中的辅助设备用电、商业建筑中的景观照明用电,以及居民生活中的非紧急用电等 。
(二)实施策略
- 签订响应协议:能源供应商与用户提前签订可削减需求响应协议,明确可削减负荷的类型、数量、响应时间及补偿标准。
- 紧急触发与响应:当系统出现供需失衡或故障时,能源供应商通过通信系统向用户发送削减负荷指令。用户在规定时间内启动负荷削减措施,并反馈执行情况 。
(三)应用效果
可削减需求侧响应在保障系统安全稳定运行方面发挥重要作用。能够快速缓解能源供应压力,避免因负荷过高导致的停电事故;降低系统运行风险,提高系统的可靠性与韧性 。
五、多种需求侧响应的协同效应
弹性电价、可平移及可削减需求侧响应并非相互独立,而是相互补充、协同作用。弹性电价为用户提供了宏观的用电成本引导,使用户形成长期的用电行为习惯;可平移响应基于电价信号与用户自身需求,实现用电时段的灵活调整;可削减响应则作为应急保障措施,在关键时刻确保系统稳定 。三者协同,能够更全面地调节能源供需,提升综合能源系统的灵活性与稳定性。例如,在电力高峰时段,通过提高电价(弹性电价),结合引导用户平移部分用电负荷(可平移响应),并在必要时削减非关键负荷(可削减响应),可有效降低高峰负荷,保障系统安全运行 。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
本主页CSDN博客涵盖以下领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类