DTW-Kmeans-Transformer-BiLSTM组合模型!时序聚类+状态识别!

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在大数据与人工智能蓬勃发展的时代,时序数据广泛存在于工业生产、金融交易、医疗健康等众多领域。如何从海量且复杂的时序数据中精准实现聚类分析与状态识别,成为挖掘数据价值、推动行业发展的关键。此前我们探索过多种模型,如今 DTW-Kmeans-Transformer-BiLSTM 组合模型的出现,凭借其强大的协同效应,为时序数据分析带来了全新的解决方案。

一、核心组件原理剖析

1.1 DTW(动态时间规整)

DTW 是一种专门用于衡量两个时序序列相似性的算法,它突破了传统欧氏距离在处理时间轴非线性变化数据时的局限。通过构建距离矩阵,寻找两个序列之间的最佳时间规整路径,使得不同速度、不同相位的时序序列也能实现精准对齐和相似性度量。在时序聚类场景中,DTW 能够准确捕捉序列间的相似特征,为聚类分析提供可靠的度量标准,即便数据存在时间上的伸缩或扭曲,也能有效识别其相似性 。

1.2 Kmeans 聚类算法

Kmeans 作为经典的无监督聚类算法,其核心逻辑是将数据集划分为 K 个簇。算法通过随机初始化簇中心,不断迭代更新,依据数据点到各簇中心的距离,将每个数据点分配到距离最近的簇,并重新计算簇中心,直至簇中心稳定,使得簇内数据点相似度高,簇间数据点相似度低。结合 DTW 提供的距离度量,Kmeans 能够高效地将相似的时序数据划分到同一类别,完成初步的时序聚类任务。

1.3 Transformer 架构

Transformer 基于自注意力机制,彻底改变了传统序列处理方式。它摒弃了循环结构,通过多头注意力机制并行计算,能够同时关注输入序列的不同位置,有效捕捉长距离依赖关系。在处理时序数据时,Transformer 可以从全局视角对时序特征进行建模,学习到数据中复杂的模式和长期依赖信息,将原始时序数据转换为包含丰富语义信息的特征向量,为后续分析提供优质的特征基础。

1.4 BiLSTM(双向长短期记忆网络)

BiLSTM 是 LSTM 的进阶版本,它由前向 LSTM 和后向 LSTM 组成。LSTM 通过遗忘门、输入门和输出门的巧妙设计,解决了传统 RNN 的梯度消失和梯度爆炸问题,能够有效处理长序列数据。而 BiLSTM 在此基础上,同时从正向和反向处理时序数据,使模型既能利用过去的信息,又能借助未来的上下文,充分挖掘时序数据中的双向依赖关系,相比单向 LSTM,能够提取更全面、更具代表性的时序特征,在时序预测和状态识别任务中表现出色。

二、模型融合实现流程

2.1 基于 DTW-Kmeans 的时序聚类

对原始时序数据进行必要的清洗、归一化等预处理后,利用 DTW 算法计算每两个时序序列之间的相似距离,构建距离矩阵。将此距离矩阵作为 Kmeans 聚类的输入依据,设定合适的簇数量 K,运行 Kmeans 算法,将相似的时序数据划分到不同的簇中。通过这一步骤,实现了对时序数据的初步分类,使得同一簇内的数据具有相似的变化趋势和特征,为后续深入分析奠定基础。

2.2 Transformer 特征深度提取

将 Kmeans 聚类后的各簇时序数据分别输入到 Transformer 模型中。Transformer 利用自注意力机制,对每个时间步的特征进行加权聚合,从不同时间尺度和特征维度挖掘数据中的潜在模式和长期依赖关系。经过多层 Transformer 层的处理,将原始的时序数据转换为高维、抽象且富含语义信息的特征向量,这些特征向量浓缩了时序数据的核心特征,为状态识别提供了强大的特征支持。

2.3 BiLSTM 状态精准识别

将 Transformer 提取的特征向量输入到 BiLSTM 网络中。BiLSTM 凭借其双向处理能力,结合前向和后向的信息流动,对输入特征进行进一步学习和处理。通过门控机制,BiLSTM 能够选择性地记忆和遗忘信息,准确捕捉时序数据中的状态变化规律。在训练过程中,通过标注数据的监督学习,BiLSTM 学习不同状态下的特征模式,最终实现对时序数据状态的精准识别,如在工业设备监测中判断设备的正常运行、故障预警等状态。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值