✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
摘要: 配电网重构是提高配电网运行效率、降低网损、改善电压质量的关键手段。本文针对配电网重构问题,提出一种基于蜻蜓优化算法(Dragonfly Algorithm, DA)的求解方法,并以IEEE123节点算例为平台,验证该算法在配电网重构中的有效性。文章详细介绍了蜻蜓优化算法的基本原理、模型建立以及算法实现过程,并对重构结果进行分析,证明DA算法在解决配电网重构问题上具有良好的全局寻优能力和收敛速度。
关键词: 配电网重构;蜻蜓优化算法;IEEE123节点;网损;电压质量
1. 引言
随着社会经济的快速发展和电力需求的日益增长,配电网作为电力系统的重要组成部分,其安全、稳定、高效运行显得尤为重要。然而,由于配电网结构复杂、负荷随机波动等因素,导致网损较大、电压质量下降,严重影响了电力系统的整体性能。配电网重构通过改变开关状态,优化网络拓扑结构,从而实现降低网损、改善电压质量、提高供电可靠性等目标,已成为电力系统运行管理中的一项关键技术。
传统的配电网重构方法主要包括启发式算法、数学优化算法和智能优化算法。启发式算法虽然计算速度快,但容易陷入局部最优解;数学优化算法如线性规划、非线性规划等,对模型要求较高,且计算复杂度高;近年来,智能优化算法凭借其强大的全局搜索能力和适应性,在配电网重构领域得到了广泛应用。
本文提出一种基于蜻蜓优化算法的配电网重构方法。蜻蜓优化算法是一种新兴的智能优化算法,具有参数少、易于实现、全局搜索能力强等优点。本文将蜻蜓优化算法应用于IEEE123节点配电网重构问题,通过仿真实验验证该算法的有效性。
2. 配电网重构数学模型
配电网重构的目标是在满足一定约束条件下,通过改变开关状态,优化网络拓扑结构,从而实现指定的优化目标,通常以降低网损作为优化目标。
2.1 目标函数
配电网重构的目标函数通常为最小化网损,可表示为:
ini
min f = ∑_{i=1}^{nb} I_i^2 * R_i
其中,f
为网损,nb
为支路数量,I_i
为支路 i 的电流,R_i
为支路 i 的电阻。
2.2 约束条件
配电网重构需要满足以下约束条件:
-
功率平衡约束: 节点功率流入等于节点功率流出。
arduino
P_{Gi} - P_{Di} = V_i ∑_{j=1}^{n} V_j (G_{ij} cos θ_{ij} + B_{ij} sin θ_{ij})
Q_{Gi} - Q_{Di} = V_i ∑_{j=1}^{n} V_j (G_{ij} sin θ_{ij} - B_{ij} cos θ_{ij})其中,
P_{Gi}
和Q_{Gi}
分别为节点 i 的有功和无功发电功率,P_{Di}
和Q_{Di}
分别为节点 i 的有功和无功负荷功率,V_i
和V_j
分别为节点 i 和 j 的电压幅值,G_{ij}
和B_{ij}
分别为节点 i 和 j 之间的电导和电纳,θ_{ij}
为节点 i 和 j 之间的电压相角,n
为节点总数。 -
电压幅值约束: 节点电压幅值必须在允许范围内。
arduino
V_{i,min} ≤ V_i ≤ V_{i,max}
其中,
V_{i,min}
和V_{i,max}
分别为节点 i 的电压幅值下限和上限。 -
支路电流约束: 支路电流必须小于其容量上限。
arduino
I_i ≤ I_{i,max}
其中,
I_{i,max}
为支路 i 的电流容量上限。 -
网络拓扑约束: 配电网必须保持辐射状结构,避免形成孤岛和环网。
3. 蜻蜓优化算法
蜻蜓优化算法(DA)是Mirjalili于2015年提出的一种基于蜻蜓飞行行为的群体智能优化算法。蜻蜓在自然界中主要表现出两种行为:搜寻食物的静态行为和迁徙的动态行为。DA算法通过模拟这两种行为,实现对解空间的全局搜索和局部开发。
3.1 蜻蜓行为建模
-
分离(Separation): 避免与其他蜻蜓碰撞。蜻蜓 i 的分离行为表示为:
ini
S_i = - ∑_{j=1}^{N} (X - X_j)
其中,
X
为当前蜻蜓 i 的位置,X_j
为相邻蜻蜓 j 的位置,N
为相邻蜻蜓数量。 -
对齐(Alignment): 与周围蜻蜓的速度保持一致。蜻蜓 i 的对齐行为表示为:
ini
A_i = (∑_{j=1}^{N} V_j) / N
其中,
V_j
为相邻蜻蜓 j 的速度。 -
凝聚(Cohesion): 向群体中心移动。蜻蜓 i 的凝聚行为表示为:
ini
C_i = (∑_{j=1}^{N} X_j) / N - X
-
觅食(Food Attraction): 向食物源移动。蜻蜓 i 的觅食行为表示为:
ini
F_i = X^+ - X
其中,
X^+
为食物源的位置。 -
逃避敌人(Enemy Avoidance): 远离敌人。蜻蜓 i 的逃避行为表示为:
ini
E_i = X^- + X
其中,
X^-
为敌人的位置。
3.2 蜻蜓位置更新
蜻蜓的位置更新由以下公式决定:
css
V_{i+1} = w V_i + c_1 r_1 S_i + c_2 r_2 A_i + c_3 r_3 C_i + c_4 r_4 F_i + c_5 r_5 E_i
X_{i+1} = X_i + V_{i+1}
其中,V_{i+1}
为蜻蜓 i 的速度更新,X_{i+1}
为蜻蜓 i 的位置更新,w
为惯性权重,c_1
、c_2
、c_3
、c_4
、c_5
为权重系数,r_1
、r_2
、r_3
、r_4
、r_5
为 [0, 1] 之间的随机数。
3.3 蜻蜓优化算法流程
-
初始化: 初始化蜻蜓种群的位置和速度。
-
评估: 计算每个蜻蜓的适应度值(目标函数值)。
-
更新食物源和敌人位置: 选择最佳蜻蜓位置作为食物源,最差蜻蜓位置作为敌人。
-
计算分离、对齐、凝聚、觅食和逃避行为: 根据公式计算每个蜻蜓的分离、对齐、凝聚、觅食和逃避行为。
-
更新速度和位置: 根据公式更新每个蜻蜓的速度和位置。
-
边界处理: 将超出边界的蜻蜓位置重新设置到边界范围内。
-
判断是否满足终止条件: 如果满足终止条件(例如达到最大迭代次数),则停止算法,输出最优解;否则,返回步骤2。
4. 基于蜻蜓优化算法的配电网重构实现
4.1 解的编码与解码
本文采用基于开关的编码方式。将配电网中所有分段开关进行编号,一个蜻蜓的位置代表一组开关状态,即哪些分段开关断开,哪些闭合。例如,如果配电网有10个分段开关,一个蜻蜓的位置为[1, 0, 1, 0, 1, 0, 1, 0, 1, 0],其中1表示该开关断开,0表示该开关闭合。
在解码过程中,需要根据蜻蜓的位置信息,确定配电网的拓扑结构,并进行潮流计算,验证其是否满足辐射状网络结构、节点电压幅值约束和支路电流约束等条件。如果违反约束条件,则需要进行相应的惩罚。
4.2 适应度函数
适应度函数用于评估蜻蜓位置的优劣程度。本文采用网损作为目标函数,并加入惩罚项,以处理约束条件:
ini
fitness = f + penalty
其中,f
为网损,penalty
为惩罚项。惩罚项的设置可以根据违反约束条件的程度进行调整,通常采用较大的惩罚系数,以确保搜索过程中倾向于满足约束条件的解。
4.3 算法实现步骤
-
数据初始化: 读取配电网数据,包括节点电压、支路参数、负荷数据等。
-
参数设置: 设置蜻蜓优化算法的参数,包括种群规模、最大迭代次数、惯性权重、权重系数等。
-
初始化蜻蜓种群: 随机生成初始蜻蜓种群的位置和速度。
-
评估: 计算每个蜻蜓的适应度值。
-
更新食物源和敌人位置: 选择最佳蜻蜓位置作为食物源,最差蜻蜓位置作为敌人。
-
迭代优化:
-
计算分离、对齐、凝聚、觅食和逃避行为。
-
更新速度和位置。
-
边界处理。
-
评估每个蜻蜓的适应度值。
-
更新食物源和敌人位置。
-
-
终止判断: 判断是否达到最大迭代次数,如果达到,则停止算法,输出最优解;否则,返回步骤6。
-
结果分析: 对最优解进行分析,计算网损降低百分比、电压质量改善情况等。
5. 实验结果与分析
本文采用IEEE123节点配电网算例进行仿真实验,验证蜻蜓优化算法在配电网重构中的有效性。IEEE123节点配电网是电力系统分析中常用的测试系统,其结构复杂,包含了多种类型的负荷和分布式电源,能够有效测试算法的性能。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇