【隐私计算笔谈】MPC系列专题(十五):三方复制秘密分享

本文介绍了三方复制秘密分享技术,一种用于安全多方计算的协议,能容忍一个腐化用户。通过实例详细解释了如何实现多方加法和乘法操作,确保在秘密共享过程中的安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【隐私计算笔谈】MPC系列专题(十五):三方复制秘密分享

三方复制秘密分享

复制秘密共享( three-party replicated secret sharing ),是另一种秘密共享技术。本次科普要介绍的是Araki等人的半诚实的三方复制秘密共享协议,用于在三方环境下的安全多方计算和秘密共享,可以容忍最多一个腐化用户,其相比于Shamir(2, 3)来说有非常小的通信量和计算量。

首先介绍在布尔电路下的情景,假设参与者分别为 Alice、Bob和Candy,三者的序号分别记为1、2、3。在复制秘密共享中,一个单比特的秘密𝑥会被生成为三个子秘密𝑥1,𝑥2,𝑥3,且𝑥=𝑥1⊕𝑥2⊕𝑥3。具体方式为:秘密分享者首先生成三个随机数𝑎1,𝑎2,𝑎3,并且满足𝑎1⊕𝑎2⊕𝑎3=0。让子秘密𝑥1=𝑎3⊕𝑥,𝑥2=𝑎1⊕𝑥,子秘密𝑥3=𝑎2⊕𝑥。则𝑥1⊕𝑥2⊕𝑥3=𝑎1⊕𝑎2⊕𝑎3⊕𝑥⊕𝑥⊕𝑥=𝑥。让Alice、Bob和Candy分别持有(𝑎1,𝑥1), (𝑎2,𝑥2), (𝑎3,𝑥3),将这种秘密分享方式简记为[𝑥]。满足限制条件𝑎1⊕𝑎2⊕𝑎3=0下生成随机数𝑎1,𝑎2,𝑎3的具体方式之后再进行介绍。在这里插入图片描述在这种情况下,任意两个参与者合谋就可以恢复出秘密𝑥,如Bob和Candy合谋,则Candy可以利用自己手中的𝑥3和Bob手中的𝑎2,计算𝑥3⊕𝑎2=𝑎2⊕𝑥⊕𝑎2=𝑥。

在安全多方计算中,只要实现了多方加法和多方乘法,即可实现完备。因此接下来开始介绍该三方复制秘密共享协议实现多方加法和多方乘法的方式。此时Alice已经持有了(𝑎1,𝑥1), (𝑏1,𝑦1),Bob持有了(𝑎2,𝑥2), (𝑏2,𝑦2), Candy持有了(𝑎3,𝑥3), (𝑏3,𝑦3)。

首先是XOR(加法)的实现方式:要计算 [𝑧]=[𝑥+𝑦],Alice、Bob和Candy只需要分别本地计算𝑥𝑖+𝑦𝑖,𝑖∈{ 1,2,3}即可。以Alice为例,因为𝑥1=𝑎3⊕𝑥,𝑦1=𝑏3⊕𝑦,则𝑥1⊕𝑦1=𝑎3⊕𝑥⊕𝑏3⊕𝑦=(𝑎3⊕𝑏3)⊕(𝑥⊕𝑦)=(𝑎3⊕𝑏3)⊕𝑧,若将𝑎1⊕𝑏1记为𝑐1,𝑎2⊕𝑏2记为𝑐2,𝑎3⊕𝑏3记为𝑐3,则Alice、Bob和Candy在分别完成本地计算𝑥𝑖+𝑦𝑖,𝑖∈{ 1,2,3}后,Alice可以得到𝑧1=𝑐3⊕𝑧,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值