作者 | 胡震恺 等
【隐私计算笔谈】MPC系列专题(十七):三方复制秘密共享(三)
文章目录
- 【隐私计算笔谈】MPC系列专题(十七):三方复制秘密共享(三)
- 推荐阅读
-
-
- 【隐私计算笔谈】MPC系列专题(一):安全多方计算应用场景一览
- 【隐私计算笔谈】MPC系列专题(二):模型和Shamir秘密共享机制
- 【隐私计算笔谈】MPC系列专题(三):不经意传输与混淆电路
- 【隐私计算笔谈】MPC系列专题(四):GMW协议和BGW协议
- 【隐私计算笔谈】MPC系列专题(五):Beaver三元组和BMR协议
- 【隐私计算笔谈】MPC系列专题(六):零知识证明和比特承诺
- 【隐私计算笔谈】MPC系列专题(七):信息论安全的混淆电路
- 【隐私计算笔谈】MPC系列专题(八):OT协议(二)
- 【隐私计算笔谈】MPC系列专题(九):OT协议(三)
- 【隐私计算笔谈】MPC系列专题(十):安全多方计算下的集合运算
- 【隐私计算笔谈】MPC系列专题(十一):共享随机数和比特分享
- 【隐私计算笔谈】MPC系列专题(十一):共享随机数和比特分享
- 【隐私计算笔谈】MPC系列专题(十二):比特比较
- 【隐私计算笔谈】MPC系列专题(十三):比特分解
- 【隐私计算笔谈】MPC系列专题(十四):双方比较
- 【隐私计算笔谈】MPC系列专题(十五):三方复制秘密分享
- 【隐私计算笔谈】MPC系列专题(十六):三方复制秘密共享(二)
-
三方复制秘密共享(二)
上次科普介绍了在布尔电路下的三方复制秘密共享方案,这次科普介绍把它扩展到环2n下的方式。
首先是在环2n下生成三个随机数𝑎1,𝑎2,𝑎3,并且满足𝑎1+𝑎2+𝑎3=0。上次科普已经介绍过满足条件𝑎1⊕𝑎2⊕𝑎3=0的随机数生成方式,满足条件满足𝑎1+𝑎2+𝑎3=0的只需对上次的方式进行一些小更改:
Alice、Bob、Candy分别生成随机数𝜌1,𝜌2,𝜌3,Alice将𝜌1发送给Bob,Bob将𝜌2发送给Candy,Candy将𝜌3发送给Alice。接着Alice计算𝑎1=𝜌1−𝜌3,Bob计算𝑎2=𝜌2−𝜌1,Candy计算𝑎3=𝜌3−𝜌2。
显然,𝑎1+𝑎2+𝑎3= 𝜌1−𝜌3+𝜌2−𝜌1+𝜌3−𝜌2=0。
假设秘密为𝑥, 𝑦,则𝑥1=𝑎3−𝑥,𝑥2=𝑎1−𝑥,𝑥3=𝑎2−𝑥;𝑦1=𝑏3−𝑦,𝑦2=𝑏1−𝑦,𝑦3=𝑏2−𝑦。Alice持有(𝑥1,𝑎1), (𝑦1,𝑏1),Bob持有(𝑥2,𝑎2), (𝑦2,𝑏2),Candy持有(𝑥3, 𝑎3), (𝑦3, 𝑏3)。
加法的实现方式为:布尔电路上的加法原理相同,Alice、Bob和Candy在模2n下直接本地计算𝑥𝑖+𝑦𝑖即可。如Alice计算𝑧1=𝑥1+𝑦1=𝑎3−𝑥+𝑏3−𝑦=(𝑎3+𝑏3)−(𝑥+𝑦),𝑐1=𝑎1+𝑏1。同理Bob计算𝑧2=𝑥2+𝑦2=𝑎1−𝑥+𝑏1−𝑦=(𝑎1+𝑏1)−(𝑥+𝑦),𝑐2=𝑎2+𝑏2;Candy计算𝑧3=(𝑥3+𝑦3)=𝑎2−𝑥+𝑏2−𝑦=(𝑎2+𝑏2)−(𝑥+𝑦),𝑐3=𝑎3+𝑏3。可以验证:
𝑐1+ 𝑐2 + 𝑐3 = − ( a 1 + a 2 +