【隐私计算笔谈】MPC系列专题(十七):三方复制秘密共享(三)

本文是隐私计算MPC系列专题的第十七篇,重点探讨了如何在环2n下实现三方复制秘密共享,包括加法和乘法操作的详细过程,旨在促进秘密共享在信息安全和密码学领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
作者 | 胡震恺 等



【隐私计算笔谈】MPC系列专题(十七):三方复制秘密共享(三)

三方复制秘密共享(二)

上次科普介绍了在布尔电路下的三方复制秘密共享方案,这次科普介绍把它扩展到环2n下的方式。

首先是在环2n下生成三个随机数𝑎1,𝑎2,𝑎3,并且满足𝑎1+𝑎2+𝑎3=0。上次科普已经介绍过满足条件𝑎1⊕𝑎2⊕𝑎3=0的随机数生成方式,满足条件满足𝑎1+𝑎2+𝑎3=0的只需对上次的方式进行一些小更改:

Alice、Bob、Candy分别生成随机数𝜌1,𝜌2,𝜌3,Alice将𝜌1发送给Bob,Bob将𝜌2发送给Candy,Candy将𝜌3发送给Alice。接着Alice计算𝑎1=𝜌1−𝜌3,Bob计算𝑎2=𝜌2−𝜌1,Candy计算𝑎3=𝜌3−𝜌2

显然,𝑎1+𝑎2+𝑎3= 𝜌1−𝜌3+𝜌2−𝜌1+𝜌3−𝜌2=0。
在这里插入图片描述

三方产生满足𝑎1+𝑎2+𝑎3=0的随机数

假设秘密为𝑥, 𝑦,则𝑥1=𝑎3−𝑥,𝑥2=𝑎1−𝑥,𝑥3=𝑎2−𝑥;𝑦1=𝑏3−𝑦,𝑦2=𝑏1−𝑦,𝑦3=𝑏2−𝑦。Alice持有(𝑥1,𝑎1), (𝑦1,𝑏1),Bob持有(𝑥2,𝑎2), (𝑦2,𝑏2),Candy持有(𝑥3, 𝑎3), (𝑦3, 𝑏3)。

加法的实现方式为:布尔电路上的加法原理相同,Alice、Bob和Candy在模2n下直接本地计算𝑥𝑖+𝑦𝑖即可。如Alice计算𝑧1=𝑥1+𝑦1=𝑎3−𝑥+𝑏3−𝑦=(𝑎3+𝑏3)−(𝑥+𝑦),𝑐1=𝑎1+𝑏1。同理Bob计算𝑧2=𝑥2+𝑦2=𝑎1−𝑥+𝑏1−𝑦=(𝑎1+𝑏1)−(𝑥+𝑦),𝑐2=𝑎2+𝑏2;Candy计算𝑧3=(𝑥3+𝑦3)=𝑎2−𝑥+𝑏2−𝑦=(𝑎2+𝑏2)−(𝑥+𝑦),𝑐3=𝑎3+𝑏3。可以验证:
𝑐1+ 𝑐2 + 𝑐3 = − ( a 1 + a 2 +

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值