算法:动态规划

一般思路

解决动态规划问题:

  • 写出状态表示
  • 写出状态转移方程
    • Base情况
    • 一般情况
  • 状态压缩——减小空间复杂度

198. 打家劫舍

对于每个i,维护抢还是不抢两个状态

买卖股票

状态表示

  • 天数 i 、交易次数 k 、是否持有股票
  • dp[i][k][0] 表示第i天,交易了k次,手上没有股票
  • dp[i][k][1] 表示第i天,交易了k次,手上持有股票

状态方程

  • d p [ i ] [ k ] [ 0 ] = m a x ( d p [ i − 1 ] [ k ] [ 0 ] , d p [ i − 1 ] [ k ] [ 1 ] + p r i c e [ i ] ) dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] +price[i]) dp[i][k][0]=max(dp[i1][k][0],dp[i1][k][1]+price[i])
    手上没有,或者卖了
  • d p [ i ] [ k ] [ 1 ] = m a x ( d p [ i − 1 ] [ k − 1 ] [ 0 ] , d p [ i − 1 ] [ k − 1 ] [ 0 ] − p r i c e [ i ] ) dp[i][k][1] = max(dp[i-1][k-1][0] ,dp[i-1][k-1][0] - price[i]) dp[i][k][1]=max(dp[i1][k1][0],dp[i1][k1][0]price[i])
    手上有,或者买进

base case

  • d p [ i ] [ 0 ] [ 0 ] = 0 dp[i][0][0] = 0 dp[i][0][0]=0
  • d p [ i ] [ 0 ] [ 1 ] = − i n f dp[i][0][1] = - inf dp[i][0][1]=inf
  • d p [ − 1 ] [ k ] [ 0 ] = 0 dp[-1][k][0] = 0 dp[1][k][0]=0
  • d p [ − 1 ] [ k ] [ 1 ] = − i n f dp[-1][k][1] = - inf dp[1][k][1]=inf

121. 买卖股票的最佳时机

求差的最大值,每次计算先前最大与当前最大的最大。

122. 买卖股票的最佳时机 II

尽可能多买,就遇到差价就买

123. 买卖股票的最佳时机 III

交易两次的话,从头到尾看一次,从尾到头看一次。然后结合起来找最优。
相当于找左边与右边的最优。

子序列问题

状态表示的多样性:

  • 一维dp[i]
    • 当前长度的最优解
    • 以当前nums[i]结尾数组的最优解
  • 二维:dp[i][j]
    • nums[i:j]这个数组的最优解
    • 两个数组,数组nums1[:i],nums2[:j]的最优解

状态转移方程

  • base case可以扩增长度,避免i-1的问题

1143. 最长公共子序列

  • 状态表示:dp[i][j] 表示数组1到i,数组2到j时最长公共子序列的长度
  • 状态转移:
    d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + 1 i f n u m s 1 [ i ] = n u m s 2 [ j ] dp[i][j] = dp[i-1][j-1]+1 \quad if\quad nums1[i]=nums2[j] dp[i][j]=dp[i1][j1]+1ifnums1[i]=nums2[j]
    e l s e = max ⁡ ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) else=\max(dp[i-1][j],dp[i][j-1]) else=max(dp[i1][j],dp[i][j1])

300. 最长上升子序列

  • 思路1:先排序,然后计算两个排序前后两个数组的最长公共子序列、 O ( N 2 ) O(N^2) O(N2)
  • 思路2: O ( N 2 ) O(N^2) O(N2)
    • 状态表示:dp[i]表示以nums[i]为结尾上升子序列的长度。【所以答案是max(dp[i])】
    • 状态转移: d p [ i ] = m a x ( d p [ j ] + 1 , j < i ) i f n u m s [ i ] > n u m s [ j ] dp[i] = max(dp[j] + 1,j < i) \quad if \quad nums[i] > nums[j] dp[i]=max(dp[j]+1,j<i)ifnums[i]>nums[j]
  • 思路3:二分查找? O ( N l o g N ) O(NlogN) O(NlogN)

516. 最长回文子序列

  • 状态表示: d p [ i [ [ j ] dp[i[[j] dp[i[[j]表示数组nums[i:j+1]的最长回文子序列的长度
  • 状态转移:
    • d p [ i ] [ j ] = d p [ i + 1 ] [ j − 1 ] + 2 i f n u m s [ i ] = n u m s [ j ] dp[i][j] =dp[i+1][j-1] + 2 \quad if\quad nums[i]=nums[j] dp[i][j]=dp[i+1][j1]+2ifnums[i]=nums[j]
    • else: d p [ i ] [ j ] = m a x ( d p [ i + 1 ] [ j ] , d p [ i ] [ j − 1 ] ) dp[i][j] =max(dp[i+1][j],dp[i][j-1]) dp[i][j]=max(dp[i+1][j],dp[i][j1])

53. 最大子序和

  • 状态表示: d p [ i ] dp[i] dp[i]表示以 n u m s [ i ] nums[i] nums[i]为结尾的子序数组
  • 状态转移: d p [ i ] = m a x ( d p [ i − 1 ] + n u m s [ i ] , n u m s [ i ] ) dp[i] =max(dp[i-1]+nums[i],nums[i]) dp[i]=max(dp[i1]+nums[i],nums[i])

背包问题

0-1背包问题是,对于一个承重W的背包,有N个物品,每个物品有对应的重量以及价值。怎么装才能获得最大价值?

  • 状态表示: d p [ i ] [ j ] dp[i][j] dp[i][j]表示前i个物品,承重j时的最大价值
  • 状态转移方程: d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − n u m s [ i ] ) dp[i][j] = max(dp[i-1][j],dp[i-1][j-nums[i]) dp[i][j]=max(dp[i1][j],dp[i1][jnums[i]) if j -nums[i] >=0
  • 边界情况:都是0,要考虑i-1越界的情况。

背包问题的变体:

416. 分割等和子集

变成背包问题,但不需要考虑价值,只考虑能不能装(true or false)

322. 零钱兑换

状态表示: d p [ i ] dp[i] dp[i],amount为i时最少硬币数。
状态转移方程: d p [ i ] = m i n ( d p [ i − c ] , f o r c i n c o i n s ) + 1 dp[i] = min(dp[i-c],for \quad c\quad in \quad coins)+1 dp[i]=min(dp[ic],forcincoins)+1

518. 零钱兑换 II

状态表示: d p [ i ] [ j ] dp[i][j] dp[i][j]:使用前i个硬币,金额为j时的组合数
状态转移: d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − c o i n s [ i ] ] dp[i][j] = dp[i-1][j] + dp[i][j-coins[i]] dp[i][j]=dp[i1][j]+dp[i][jcoins[i]]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值