tianchi过往方法

题目

在这里插入图片描述
=

shuzilian ai

在这里插入图片描述

改进1、由于没有正样本

进行多阶段训练
在这里插入图片描述

改进2、由于目标尺寸变化过大

做bbox的尺寸筛选,在不同的RPN层上选择最合适的bbox大小。保证模型更快的收敛和学习到比较好的效果。
在这里插入图片描述
模型+softnms
[图 模型+softnms]

减少训练时长

从网络结构的改进优化训练效果而不是多尺度输入(用了14倍的输入):把cascade级联检测器的方式结合到FPN的每个RPN层上
在这里插入图片描述
[图上是测试用时]

总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值