自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 资源 (4)
  • 收藏
  • 关注

原创 YOLOv12即插即用---RFAConv

RFAConv 并非简单叠加注意力结构,而是从“接受域本质”出发,对卷积机制进行了深入重构。其核心优势包括:📌 引入空间自适应机制,增强特征表达力;📌 有效缓解卷积参数共享带来的感知盲区;📌 可无缝替代传统卷积模块,兼容性强;📌 对高分辨率和复杂纹理结构具备更强感知能力。

2025-04-17 17:23:47 308

原创 YOLOv12即插即用---EfficientAttention

大多数注意力机制采用点积(dot-product)方式计算注意力权重,但这种方式通常伴随着高昂的内存开销和计算成本,尤其在处理高分辨率图像时,限制了其实际应用的可扩展性。为此,本文提出了一种等价于传统 dot-product 注意力的高效注意机制,能够在保持表达能力的同时,显著减少计算复杂度和内存占用。以Non-local 模块相似性计算:首先通过点积计算所有像素之间的相似性关系,形成注意力矩阵。特征聚合:随后利用该注意力矩阵对 value(V)进行加权求和,生成最终输出。

2025-04-16 13:49:19 58

原创 YOLOv12即插即用---PPA

多分支特征提取:PPA 模块采用局部卷积、全局卷积和串行卷积三种并行分支,从多个尺度和层次提取特征,有效保留小目标在多次下采样过程中的关键信息。特征融合与注意力增强:在特征提取后,PPA 模块引入高效的通道注意力和空间注意力机制,实现自适应特征增强,进一步强化小目标的表示能力。替代传统卷积结构:PPA 模块替代编码器和解码器中的常规卷积操作,通过多分支设计与注意力引导,更高效地捕捉小目标特征,提高整体检测性能。

2025-04-11 11:18:27 415

原创 YOLOv12即插即用--CPAM

本文提出了一种新型基于注意尺度序列融合的 YOLO 框架,称为,该框架结合空间与尺度信息,实现了高效且精确的细胞实例分割。在 YOLO 分割框架的基础上,设计了,用于增强多尺度信息提取能力;同时引入,以融合不同尺度下的特征图,从而丰富目标细节表达。此外,提出一种,用于集成 SSFF 与 TPE 模块,增强模型对小目标的通道依赖性与空间定位能力,进一步提升检测与分割性能。在两个细胞图像数据集上的实验表明,ASF-YOLO 在分割精度与推理速度方面均优于现有先进方法。

2025-04-09 13:18:08 205

原创 YOLO系列论文图表绘制代码

【代码】YOLO系列论文图表绘制代码。

2025-04-03 17:16:33 88

原创 YOLOv12即插即用-Pconv(风车卷积)

PinwheelConv(风车状卷积)充分利用了IRST(红外搜索与跟踪)中的高斯分布特性,以极少的参数实现了高效且更大感受野的特性。此外,本文还提出了一种简单而高效的,有效缓解了标签 IoU 变化带来的不稳定性。通过与现有卷积模块和损失函数的广泛对比,所提出的方法在准确性和鲁棒性方面始终优于最先进的方法,展现出卓越的性能和广泛的应用潜力。

2025-04-01 14:49:58 399

原创 YOLOv12即插即用--BiLevelRoutingAttention

作为的核心构建模块,在捕获方面展现出强大能力。然而,这种全局建模能力伴随着和,因为其需要计算。为了解决这一问题,许多研究尝试通过引入然而,这些方法,并未根据。与传统方法不同,我们提出了一种机制的新型,实现了,提升了模型的灵活性与效率。具体而言,该方法通过这种双层路由注意力机制不仅以节省计算和内存,还采用,实现了高效推理。在该注意力机制的基础上,我们进一步提出了一种新型——。由于 BiFormer,避免了对不相关 token 的无效计算,因此其在,尤其在(如目标检测、语义分割)中表现优异。

2025-03-26 10:03:15 89

原创 YOLOv12即插即用--DeformableAttention2D

传统 Transformer 注意力机制关注,计算量大,导致推理速度较慢。而通过,有效降低计算复杂度,同时提高模型的检测效率。相比于原始的,其训练过程通常需要,往往需要才能精准地定位目标特征。而在中,由于采用了和,模型可以更快速地聚焦于,从而,据研究表明,其训练时间可缩短至,大幅提升训练效率,同时保持甚至超越原始 DETR 的检测性能。这种改进使得特别适用于和,在等任务中展现出广泛的应用价值。

2025-03-26 09:53:49 71

原创 YOLOv12即插即用--AKConv

(Adaptive Kernel Convolution)是一种创新的卷积结构,允许,区别于传统卷积核的模式。这一特性对于极具优势,因为它能够根据实际需求,从而实现更加。在的情况下,AKConv 通过和,使得仍能保持,这对嵌入式设备、移动端推理以及低功耗 AI 计算尤为关键。同时,在的情况下,AKConv 也能够充分利用,提供更多优化选项,以进一步提升网络性能。AKConv 的在于其及。它能够,从而更精准地匹配,显著提升。此外,这一思想还具备,可以根据设计,并通过以适应复杂场景下的。

2025-03-26 09:44:39 104

原创 YOLOv12即插即用--LSKblockAttention

本文介绍了如何在中应用,以增强。作为一种能够的网络,在任务中展现出了卓越的能力,并在多个数据集上刷新了记录。其核心思想是通过大核可分离卷积(LSK)来增强模型的,特别适用于检测那些尺度变化大、特征微弱的目标。在本研究中,我们对进行了深入优化,将模块巧妙地融入,以进一步提升小目标的检测性能。该优化策略不仅增强了模型对弱小目标的捕捉能力,还有效降低了漏检率,使检测结果更加稳定可靠。实验表明,这种改进方法能够有效提升红外遥感小目标的检测精度,尤其适用于。本研究为。

2025-03-26 09:36:12 65

原创 YOLOv12即插即用--LSKA

大型可分离核注意力(LSKA)模块的视觉注意力网络(VAN)在众多视觉任务中展现出了卓越的性能,甚至超越了视觉变换器(ViTs)。然而,现有LSKA模块中的深度卷积层在使用大尺度卷积核时,其计算量和内存占用呈二次增长,严重限制了模型的高效性。为了解决这一问题,并使VAN的注意力模块能够高效利用超大卷积核,我们提出了一种改进的大型可分离核注意力(LSKA)模块。LSKA 通过将深度卷积层的二维(2D)卷积核分解为级联的,从而显著降低计算复杂度和内存开销。

2025-03-26 09:24:02 81

原创 YOLOv12即插即用--SEAM

SEAM(Spatially Enhanced Attention Module)是一种专为解决遮挡问题而设计的注意力机制,旨在提升模型在目标受遮挡情况下的识别能力。遮挡会导致特征响应减弱或缺失,从而影响整体识别的准确性。SEAM 的核心目标是在增强未遮挡区域特征响应的同时,弥补遮挡区域的信息损失,使模型能够更加鲁棒地理解和处理复杂场景。SEAM 通过学习遮挡区域与未遮挡区域之间的潜在关系,动态调整特征图的关注点,使得模型能够智能地重分配注意力,聚焦于关键的未遮挡特征,同时弱化噪声干扰。

2025-03-26 09:10:34 226

原创 自定义数据集进行大模型微调

一般进行大模型数据集准备时常用的两种数据集格式:ALpaca和shareGPT。

2025-03-17 12:31:10 1353

原创 DEIM:加速Transformer架构目标检测的突破,YOLO系列的启发

增加目标监督的密度:通过像Dense O2O一样增加每张图像中的目标数量,提高正样本的密度,从而加速训练收敛。优化低质量匹配:借鉴Matchability-Aware Loss,通过动态调整损失函数,提高低质量匹配的优化效率,减少冗余框的生成。提升训练效率:通过引入高效的训练框架,减少训练周期并提高精度,为YOLO系列提供了加速收敛的思路。总之,DEIM不仅在DETR模型上带来了突破,也为YOLO系列目标检测模型的未来发展提供了创新的方向。

2025-02-15 15:03:29 901

原创 Qwen2.5自定义数据集微调

常见的数据集格式有Alpaca和ShareGPT格式。

2024-12-31 11:14:18 1221

原创 Qwen2-VL微调体验

本博客使用的是2B模型,所以仅用了单卡3090,若大一点的模型,自行根据实际情况准备显卡安装Python>=3.8安装Qwen2-VL必要的库。

2024-12-18 21:04:22 957

原创 YOLO即插即用---HWAB

YOLO小伙伴可进群交流,群里有答疑(QQ:828370883)

2024-11-29 14:43:19 1093 1

原创 YOLO即插即用模块---MEGANet

将 EGA 模块添加到目标分类网络中,例如在 Faster R-CNN 的 RoI Pooling 层之后添加 EGA 模块,增强目标区域特征,提高分类准确率。: 将 EGA 模块添加到特征提取网络中,例如在 ResNet 或 EfficientNet 的某些层之间插入 EGA 模块,增强特征图中目标边界信息。: 将 EGA 模块添加到目标框回归网络中,例如在 RetinaNet 或 YOLO 的回归层之前添加 EGA 模块,引导模型更精确地回归目标边界。: 利用编码器提取的特征生成分割结果。

2024-11-11 15:00:25 2890 5

原创 YOLO即插即用---CPCA

通过将 CPCA 模块应用于目标检测任务中的特征提取网络、区域建议网络或检测头,可以提高对目标区域的关注,从而提高检测精度。: CPCA 可以用于目标检测任务中的特征提取网络,例如 ResNet 或 EfficientNet,以提高对目标区域的关注,从而提高检测精度。: CPCA 可以用于语义分割任务中的编码器网络,例如 U-Net 或 DeepLab,以提高对重要区域的关注,从而提高分割精度。: 将 CPCA 模块应用于区域建议网络,例如 RPN,可以提高对目标区域的关注,从而提高候选区域的准确性。

2024-11-09 16:49:33 1684 2

原创 YOLO即插即用---PConv

论文地址:2303.03667。

2024-11-06 15:27:11 2175

原创 YOLO即插即用---CLFT

注意力机制可以引导网络关注目标区域,提取更有效的特征,从而提高目标检测的准确性。: Transformer 具有强大的全局建模能力,但由于缺乏卷积操作的归纳偏置,难以有效提取局部特征,且在多次下采样后容易丢失目标信息,导致目标检测性能下降。: 该模块采用 U 型结构,通过跳跃连接将编码器中不同层次的特征与解码器中的特征进行融合,从而实现多尺度特征融合,提高目标检测的准确性。: 该模块位于网络的更深层次,利用深度特征分辨率较小的特点,可以提取更细粒度的语义信息,进一步细化目标特征,提高目标检测的精度。

2024-11-05 11:01:57 1171

原创 YOLO即插即用---HiLo Attention

通过这些详细的分析,可以看出HiLo注意力机制不仅解决了ViTs在实际应用中的速度问题,还为多种视觉任务提供了高效的解决方案,特别是在目标检测任务中,它能够显著提升模型的性能和效率。

2024-11-04 10:48:48 1225

原创 蓝耘算力平台,常见问题以及解决方案

解决方案:1.可以去重启容器2.可以去重装jyputer。

2024-11-02 17:21:02 402

原创 YOLO即插即用---PKIBlock

通过 PKINet 提取的特征可以更好地反映目标的尺度、形状、纹理和上下文信息,从而提高目标检测算法的性能。PKINet 提取的特征可以帮助检测头更好地理解目标的特征,从而提高目标检测算法的精度和鲁棒性。: 使用不同尺寸 (3x3, 5x5, 7x7, 9x9, 11x11) 的深度可分离卷积提取不同感受野的上下文特征,捕捉目标周围的环境信息。: 使用 sigmoid 函数生成注意力权重,并根据注意力权重增强 PKI 模块的输出特征,突出目标区域的特征,抑制背景区域的特征。

2024-11-02 13:30:55 1035

原创 YOLO即插即用---CoordGate

是的,这种结合视觉和几何线索的方法也可以用于2D目标检测。虽然论文的重点是3D检测,但其核心思想——利用几何信息来辅助视觉信息——同样适用于2D目标检测。总之,该论文提出的方法不仅适用于3D对象检测,也可以为2D目标检测任务带来性能上的提升,特别是在需要处理复杂场景和挑战性条件的情况下。

2024-11-02 13:17:47 813 3

原创 YOLO即插即用---HTB

该方法可以应用于各种需要语义分割的场景,并且其中提出的相对位置注意力机制也可以应用于目标检测任务中,例如增强主干网络的特征提取能力、融合不同尺度的特征、增强注意力机制等。: 该方法使用相对位置注意力机制来建模像素之间的相对位置关系,从而能够有效地捕捉图像中的局部结构和上下文信息。: 使用相对位置注意力机制来建模像素之间的相对位置关系,并学习像素之间的语义关系。: 可以使用相对位置注意力机制来融合不同尺度的特征,从而获得更丰富的特征表示。: 使用学习到的语义关系来预测图像中每个像素的语义标签。

2024-11-01 10:38:09 961

原创 YOLO即插即用---SMFA

在目标检测任务中,SAFM模块可以放在主干网络、特征融合模块或注意力机制中,以提高特征的质量和效率。论文提出了一种空间自适应特征调制 (SAFM) 模块,该模块通过学习空间上下文信息来动态地调整特征权重,从而增强有用特征并抑制无关特征。现有的图像超分辨率方法通常使用全局的注意力机制来聚合特征,这可能导致模型关注到无关区域的特征,从而影响模型的性能和效率。: SAFM模块通过调制特征权重来增强有用特征并抑制无关特征,从而提高模型的性能和效率。: SAFM模块可以用于融合不同尺度的特征,以提高特征的丰富度。

2024-11-01 10:23:07 1444

原创 YOLO即插即用---小波卷积

论文地址:2407.05848。

2024-10-31 12:33:44 2026 4

原创 YOLO即插即用---DEConv

DEA-Net通过其创新的细节增强和内容引导注意力机制,不仅能够有效去雾,还能为各种目标检测任务提供更高质量的输入图像,从而提高目标检测的准确性和可靠性。

2024-10-31 11:08:24 2997

原创 YOLO即插即用模块---ASSA

AST模型通过自适应稀疏自注意力和特征细化前馈网络,有效地解决了基于 AST模型通过自适应稀疏自注意力和特征细化前馈网络,有效地解决了基于 AST模型通过自适应稀疏自注意力和特征细化前馈网络,有效地解决了基于Transformer的图像恢复方法中存在的计算量大、冗余信息多和噪声交互等问题,并在多个图像恢复任务中取得了优异的性能。: 在SPAD数据集上,AST-B模型在PSNR指标上比现有的最佳的CNN模型和Transformer模型。: 该模块采用增强和简化方案来。

2024-10-30 15:58:34 1684

原创 YOLO即插即用模块---CAA

论文地址:2403.06258。

2024-10-30 15:36:48 742

原创 YOLO即插即用模块--PPA

使用多分支特征提取策略,捕获不同尺度和层次的特征信息,并通过注意力机制增强小目标的特征表示,确保信息在多次下采样过程中得以保留。: HCF-Net通过分层上下文融合和深度监督策略,有效地解决了红外小目标检测中的挑战,实现了更高的检测精度和鲁棒性。: 通过多个深度可分离卷积层捕获不同感受野范围的空间特征,更精细地建模目标和背景之间的差异,增强定位小目标的能力。: 增强U-Net的跳跃连接,关注自适应通道选择和精细融合高低维特征,增强小目标的显著性。消融实验验证了各个模块的有效性。

2024-10-30 15:15:40 637

原创 YOLO即插即用模块---AgentAttention

Agent Attention 是一种高效且高表达的注意力机制,可以有效地解决 Softmax 注意力计算复杂度过高的问题,在各种视觉任务中取得了显著的性能提升,特别是在高分辨率场景中。: 提出了一个新的注意力机制,名为 Agent Attention,通过引入一组代理 token (A) 来解决计算复杂度过高的问题。: 将代理 token (A) 作为查询 token (Q) 的代理,从键 (K) 和值 (V) 中聚合信息,形成代理特征 (VA)。从输入特征中提取 (例如,通过池化或卷积)

2024-10-30 15:03:51 1410 3

原创 YOLO改进快速有效方案进行缝合

确保每一层的输入输出通道数是正确的,特别是自定义模块与YOLO其他模块的连接。:如果模块的初步实验效果不明显,可以在模块的参数上进行微调,例如调整模块中的卷积核大小、激活函数等。:根据YOLO的特性进行定制化调整,如结合YOLO的检测头(Detection Head)特点,增强模块在目标检测任务中的表现。:将YOLO模型在不同数据集上的表现进行实验对比,展示加入模块前后的性能提升,以此作为论文中的核心创新点。如果模块的加入带来了精度的提升并且计算量没有明显增加,可以认为该模块在YOLO中的缝合是有效的。

2024-10-17 10:45:17 1623 2

原创 零代码做YOLO/RTDETR训练目标检测模型。

镜像分为训练和推理测试两部分。

2024-10-16 19:14:16 506

原创 Yolov11与Yolov8在西红柿识别数据集上对比

Ultralytics 最新发布的 YOLOv11 相较于其上一代产品 YOLOv8,虽然没有发生革命性的变化,但仍有一些显著的改进(值得注意的是,YOLOv9 和 YOLOv10 并非由 Ultralytics 开发)。此外,YOLOv11 在损失函数方面没有进行更新,依然采用 CIoU 作为边界框回归的损失函数,保持了 YOLOv8 中成熟的损失优化策略。:YOLOv11 中的检测头内部进行了调整,替换了两个深度可分离卷积(DWConv),这不仅降低了计算量,还在一定程度上提升了检测效果。

2024-10-14 16:22:26 2029 1

原创 改进YOLO系列:改进西红柿数据集上YOLOv8,添加Moga。

自注意力或大核卷积的朴素实现阻碍了区分性上下文信息和全局交互的建模,导致DNN与人类视觉系统之间的认知差距。为此Moga从特征交互复杂性的角度提出了一种纯卷积架构MogaNet。MogaNet采用类似金字塔式ViT的架构,包括两个模块:SMixer和CMixer。加入MogaBlock后。未加MogaBlock。

2024-10-10 11:51:53 349

原创 基于YOLOV8的西红柿检测系统

在模型的训练过程中,我们依托于特定数据集,应用了YOLOv8算法进行了系统的训练,整个训练周期涵盖了150个迭代周期(epochs)。经过精心训练,本篇文章中介绍的YOLOv8模型在西红柿检测数据集上展现了卓越的性能,不仅检测精度高,而且稳定性强,完全能够应对现实环境下的检测需求。视频的上传、检测、可视化结果展示导出;本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(5)新的损失函数。

2024-10-10 08:41:58 483 6

原创 盛世华诞,智算山河

盛世华诞,智算山河

2024-10-05 20:33:47 209

原创 YOLO/RtDETR改进创新

随着Mamba在序列建模上的效果,Mamba进入到了视觉任务,在视觉任务中主要是采用双向的SSM结构,在YOLO或者是RTDETR中有一个C2F结构,在yolov10中修改成了C2f-CIB结构,这里的创新是将CIB替换了原先的Bottleneck块,同样的我们做的一个工作是使用Mamba2中的SSD模块替换CIB从而将C2fCIB改为了我们的C2f-SSD模块。

2024-07-22 17:00:00 755

cpu环境下可运行的骨骼序列行为识别的代码

cpu环境下可运行的骨骼序列行为识别的代码

2023-12-05

ntu60-2D格式的打架数据集

ntu60-2D格式的打架数据集

2023-12-05

cs项目,模拟Atm取款机

登录: 输入银行卡号、密码,根据银行卡号和密码查询,如果可以查询到,就登录成功;否则登录失败,一般有三次重新登录的机会,超过三次冻结银行卡。 存款: 选择存款,输入金额,检查金额是否正确,如果正确需要修改余额,保存交易记录(交易账号、交易时间、交易金额、交易类型),显示余额。 取款: 选择取款,如果正确输入取款金额(便捷金额有500/800/1000/2000/5000也可以选择其他金额自己输入),判断取款金额是否小于等于余额,余额减少,保存交易记录(交易账号、交易时间、交易金额、交易类型)显示剩余余额。大于显示余额不足。 转账(选做): 选择转账功能,输入对方卡号,判断卡号是否正确,是否存在。如果存在输入转账金额,判断转账金额是否小于等于余额,判断是否超过限额,如果没有超过,本账户金额减少,对方金额增加,同时双方保存交易记录(交易账号、交易时间、交易金额、交易类型)。显示余额。 查询银行卡信息(选做): 选择查询银行卡信息,根据当前登录的卡号和密码,显示姓名,身份证号,联系电话,银行卡号,余额等。 查看交易记录: 默认显示前三个月的交易记录,可以自己设定日期范围,也可以选择查看的交易

2023-03-14

基于java实现的学生信息管理系统

实现一个系统的登录功能以及对学生信息的增删改查的功能。程序运行提示输入管理员的用户名与密码,程序查询STUDENT表,若匹配,进入系统主界面;否则,提示错误。 管理员登录后可以添加学生信息,并将学生信息信息添加到Student表中;查询所有学生信息,读取Student表中所有记录并显示出来;删除学生信息,将学生从Student表中移除;修改学生信息,将学生信息从Student表中先查询出来,然后在修改,最后将修改完的信息显示出来。3. 数据库的设计 表名 USER 序号 字段名称 字段说明 类型 位数 属性 备注 1 UID 用户编号 int 必填,非空,主键 自增 3 USERNAME 登录用户名 varchar 50 必填,非空,唯一 3 PASSWORD 密码 varchar 20 必填,非空 表名 STUDENT 序号 字段名称 字段说明 类型 位数 属性 备注 1 SID 学生编号 Int 5 必填,非空,主键 自增 2 SNAME 学生姓名 varchar 50 必填,非空   3 SEX 学生性别 varchar 10 必填,非空

2023-03-07

基于springboot实现的增删改查

使用了springboot框架搭建了项目,实现了简单的增删改查功能,可用作springboot项目学习和项目开发的基础。

2023-03-07

web前端设计高校页面。

适合于初学者,参考的纯css+html+js设计的高校页面。

2022-03-29

数据结构课程设计飞机订票系统

适合于数据结构课程,课程设计,本项目使用了较为简单的算法,易于理解。

2022-03-29

ASP实现数据库的增删改查

ASP使用一般处理程序进行操作数据库,连接前端后端。

2022-03-29

2020eclipse

2020eclipse

2022-03-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除