第1章 事件的概率

1,概率是什么?

1.1主观概率

主观概率 可以理解为一种心态或倾向性,其原因如下:

  • (1)是根据其经验和知识来对事件(某种情况)出现的可能性大小进行估计;
  • (2)根据其利害关系,反映了主体认识的一种倾向性。

1.2 试验与事件

在“概率论”中,“事件”的一般含义如下:

  • (1)有一个明确界定的试验;
  • (2)这个试验的全部可能结果,是在试验前就明确的。当然,我们不能确切地指导一个试验的全部可能结果,但可以知道它不超出某个范围;
  • (3)有一个明确的陈述,这个陈述界定了试验的全部可能结果中的一个确定的部分。

“随机事件”或“偶然事件”:
事件是否在某次试验中发生,取决于机遇。

1.3 古典概率

定义:设一个试验有 N N N等可能的结果,而事件 E E E恰包含其中的 M M M个结果,则事件 E E E的概率,记为 P ( E ) P(E) P(E)定义为:
P ( E ) = M / N P(E)=M/N P(E)=M/N
古典概率的计算:排列组合;
局限性:它只能用于全部试验结果为有限个,且等可能性发生。

1.4 概率的统计定义

用重复试验 n n n次得到的事件 E 1 E_{1} E1出现的次数 m m m,即 m / n m/n m/n作为事件 E 1 E_{1} E1的概率 P ( E 1 ) P(E_{1}) P(E1)的估计。

一个事件出现的可能性大小,应由在多次重复试验中其出现的频繁程度去刻画。

"概率的统计定义“的重要性

  • 一是提供了一种估计概率的(实用)方法。
  • 二是提供了一个检验理论正确与否的准则。

1.5 概率的公理化定义

1933年,前苏联数学家柯尔莫哥洛夫;

基本要素:
Ω \Omega Ω:抽象的集合,其元素 ω \omega ω为基本事件;
F F F: 由 Ω \Omega Ω的子集构成的一个集类,其中的每个成员就称为”事件“;
P P P:定义在 F F F上的函数,对 F F F中的任一成员 A A A P ( A ) P(A) P(A)的值理解为事件 A A A的概率。
对该函数 P P P的要求(即公理):

  • (1) 0 ≤ P ( A ) ≤ 1 0 \le P(A) \le 1 0P(A)1;
  • (2) P ( Ω ) = 1 , P ( ∅ ) = 0 P(\Omega)=1, P(\emptyset)=0 P(Ω)=1,P()=0
  • (3) 加法定理:若干个互斥事件之和的概率,等于各事件的概率之和,即
    P ( A 1 + A 2 + . . . ) = P ( A 1 ) + P ( A 2 ) + . . . P(A_{1}+A_{2}+...)=P(A_{1})+P(A_{2})+... P(A1+A2+...)=P(A1)+P(A2)+...

2,古典概率的计算

2.1 排列组合的几个常用公式

古典概率计算归结于计算两个数 M M M N N N。这种计算大多涉及排列组合。
(1) n n n个相异物件取 r ( 1 ≤ r ≤ n ) r(1 \le r \le n) r(1rn)个不同的排列总数为:
P r n = n ( n − 1 ) ( n − 2 ) . . . ( n − r + 1 ) P^{n}_{r}=n(n-1)(n-2)...(n-r+1) Prn=n(n1)(n2)...(nr+1)
(2) n n n个相异物件取 r ( 1 ≤ r ≤ n ) r(1 \le r \le n) r(1rn)个不同的组合总数为:
C r n = P r n r ! = n ! r ! ( n − r ) ! C^{n}_{r}=\frac{P^{n}_{r}}{r!}=\frac {n!}{r!(n-r)!} Crn=r!Prn=r!(nr)!n!
(3) 与二项式展开的关系,组合系数 ( r n ) (^{n}_{r}) (rn)又常称为”二项式系数“;
( a + b ) n = ∑ i = 0 n ( r n ) a i b n − 1 (a+b)^{n}=\sum_{i=0}^{n}(^{n}_{r})a^{i}b^{n-1} (a+b)n=i=0n(rn)aibn1
(4) n n n个相异物件分成 k k k堆,各堆物件数分别为 r 1 , . . . , r k r_{1},...,r_{k} r1,...,rk的分法是:
n ! / ( r 1 ! , . . . , r k ! ) n!/(r_{1}!,...,r_{k}!) n!/(r1!,...,rk!)
上式常称为多项式系数,因为它是 ( x 1 + . . . + x k ) n (x_{1}+...+x_{k})^{n} (x1+...+xk)n的展开式中 x 1 r 1 x_{1}^{r_{1}} x1r1 ⋯ \cdots x k r k x_{k}^{r_{k}} xkrk这一项的系数。

3, 事件的运算、条件概率与独立性

3.1 事件的蕴含、包含及相等

在同一试验下的两个事件 AB,如果当A发生时B必发生,则称A蕴含B,或者说B包含A,记为 A ⊂ B A \subset B AB.
若A,B互相包含,则称A,B两事件相等,记为 A = B A=B A=B.

3.2 事件的互斥和对立

若两事件A,B不能在同一试验中都发生(但可以都不发生),则称它们是互斥的。
互斥事件的一个重要情况是”对立事件“,若A为一事件,则事件 B = A 不 发 生 B={A不发生} B=A称为A的对立事件,记为 A ‾ \overline{A} A(读作 A bar).

3.3 事件的和(并)

事件C如下:
C = { A 发 生 , 或 B 发 生 } = { A , B 至 少 有 一 个 发 生 } C=\{A发生,或B发生\}=\{A, B 至少有一个发生\} C={A,B}={A,B}
记为 C = A + B C=A+B C=A+B.

3.4 概率的加法定理

若干个互斥事件之和的概率,等于各事件的概率之和,即
P ( A 1 + A 2 + . . . ) = P ( A 1 ) + P ( A 2 ) + . . . P(A_{1}+A_{2}+...)=P(A_{1})+P(A_{2})+... P(A1+A2+...)=P(A1)+P(A2)+....
加法定理的推论:
P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)

3.5 两事件的积(交)、事件的差

事件C有: C = { A , B 都 发 生 } C=\{A, B都发生\} C={A,B},称为两事件A,B的乘积,并记为 C = A B C=AB C=AB.
两事件A,B之差,记为 A − B A-B AB,定义为:
A − B = { A 发 生 , B 不 发 生 } A-B=\{A发生,B不发生\} AB={AB}.

注意
A + A = A A+A=A A+A=A; A A = A AA=A AA=A;
A − B = ∅ A-B=\empty AB=(不可能事件),推不出 A = B A=B A=B, 而只能推出 A ⊂ B A \subset B AB;
( A − B ) + B (A-B)+B (AB)+B的结果并不是 A A A, 而是 A + B A+B A+B

3.6 条件概率

从广义上说,任何概率都是条件概率,因为我们是在一定的试验之下去考虑事件的概率的,而试验即规定条件
定义:
设有两个事件A,B,而 P ( B ) ≠ 0 P(B) \neq 0 P(B)=0. 则”在给定B发生的条件下,A的条件概率“,记为 P ( A ∣ B ) P(A|B) P(AB),定义为:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B)=\frac {P(AB)}{P(B)} P(AB)=P(B)P(AB)

3.7 事件的独立性,概率乘法定理

两个事件若满足下式,则称A,B独立
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
乘法定理
若干个独立事件 A 1 , ⋯   , A n A_{1},\cdots,A_{n} A1,,An之积的概率,等于各事件概率的乘积:
P ( A 1 ⋯ A n ) = P ( A 1 ) ⋯ P ( A n ) P(A_{1} \cdots A_{n})=P(A_{1})\cdots P(A_{n}) P(A1An)=P(A1)P(An)

3.8 全概率公式与贝叶斯公式

1) 全概率公式
B 1 , B 2 , ⋯ B_{1},B_{2},\cdots B1,B2,为有限/无限个事件,它们两两互斥且在每次试验中至少发生一个,即
B i B j = ∅ ( 不 可 能 事 件 ) ( i ≠ j ) B_{i}B_{j}=\empty(不可能事件)(i\neq j) BiBj=i=j
B 1 + B 2 + ⋯ = Ω ( 必 然 事 件 ) B_{1}+B_{2}+\cdots =\Omega (必然事件) B1+B2+=Ω
对于任一事件 A A A,有:
P ( A ) = P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + ⋯ P(A)=P(B_{1})P(A|B_{1})+P(B_{2})P(A|B_{2})+\cdots P(A)=P(B1)P(AB1)+P(B2)P(AB2)+
实用意义在于:
在较复杂的情况下直接算 P ( A ) P(A) P(A)不易,但A总是随某个 B i B_{i} Bi伴出,适当去构造这一组 B i B_{i} Bi往往可以简化计算。
2)贝叶斯公式
在全概率公式的假定之下,有
P ( B i ∣ A ) = P ( A B i ) / P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ j P ( B j ) P ( A ∣ B j ) . P(B_{i}|A)=P(AB_{i})/P(A)=\frac {P(B_{i})P(A|B_{i})}{\sum _{j}P(B_{j})P(A|B_{j})}. P(BiA)=P(ABi)/P(A)=jP(Bj)P(ABj)P(Bi)P(ABi).

由”结果”推“原因”:现在有一个“结果” A A A已经发生了,在众多可能的“原因” B i B_{i} Bi之中,到底是哪一个导致了这个结果?

依据这个公式的思想发展了一整套统计推断的方法——贝叶斯统计

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值