显著性评价指标:眼注视点和目标检测指标(附参考论文)


同步在个人博客: https://ericpengshuai.github.io/shen-du-xue-xi/582602e12ae2.html

显著性评价指标

显著性一般分为物体的显著性(saliency object detection)以及眼注视点( eye fixation saliency)的显著性,虽然两者都能展现吸引用户注意力的物体或者区域,但是侧重点不同。物体的显著性主要在于图像中各个物体轮廓的检测,具体来说就是目标检测,语义分割等等都涉及到物体的显著性;而眼注视点的显著性更多是关注用户观看的区域,和用户的观看行为有联系。由于用户在观看全景视频时,往往会关注视频中比较突出的部分,所以两者也有交集。

salinecy

1. 眼注视点显著性

Receiver Operating Characteristic curve(ROC)

Area Under Curve(AUC)

Viewport-based Saliency Prediction提到这个不太好?

shuffled AUC(sAUC)

ROC 曲线又称受试者受试者工做特征曲线,以假正例率(False Positive Rate, FPR)为横轴,真正例率(True Positive Rate, TPR)为纵轴所组成的坐标图,以0~255不一样的阈值对预测的眼注视点显著图分类描点,从而绘制成曲线图。从直观上看,曲线越接近左上角,说明该算法检测性能越好;曲线下面积称之为AUC, AUC越大说明算法检测性能越好。因为AUC会受中心误差(center bias)的影响,研究者又提出更加鲁棒的sAUC评价指标。

Pearsons Linear Correlation Coefficient(CC)

CC ↑ \uparrow 是指皮尔逊相关系数,也是线性相关系数,用来评价预测的眼关注点显著图和参考图ground truth之间的线性相关性,CC越大说明该模型性能越好

协方差: C o v ( X , Y ) = Σ i = 1 n ( x i − E ( X ) ) ( y i − E ( Y ) ) n Cov(X,Y)=\frac{\Sigma_{i=1}^n(x_i-E(X))(y_i-E(Y))}{n} Cov(X,Y)=nΣi=1n(xiE(X))(yiE(Y))

感性的理解,如果数据杂乱,正负抵消,那么这个协方差就很小,就谈不上二者相关;如果数据很一致,想么协方差就负的比较多(负相关),要么就是正的比较多(正相关)

消除x和y的量差,引用皮尔逊相关系数: σ X , Y = C o v ( X , Y ) σ X ⋅ σ Y \sigma_{X,Y}=\frac{Cov(X,Y)}{\sigma_X·\sigma_Y} σX,Y=σXσYCov(X,Y)

  • 具体对于显著性而言,P和D分别代表saliency map和fixation map,被视为随机变量

C C ( P , Q ) = C o v ( P , Q ) σ ( P ) × σ ( Q ) CC(P,Q)=\frac{Cov(P,Q)}{\sigma(P)\times\sigma(Q)} CC(P,Q)=σ(P)×σ(Q)Cov(P,Q)

参考:https://blog.csdn.net/limiyudianzi/article/details/103437093

Normalized Scanpath Saliency(NSS)

NSS ↑ \uparrow 是指标准化扫描路径显着性,用来评价二者之间的差别值,NSS越大说明模型性能越好;

N S S ( P , Q ) = 1 N ⋅ Σ i ( P ‾ i × Q i ) NSS(P,Q)=\frac{1}{N}·\Sigma_i({\overline P_i}\times Q_i) NSS(PQ)=N1Σi(Pi×Qi)

其中P是saliency map,Q是fixation map的二值图,其中i是像素的下标,N是所有的像素值总数,N is the total number of fixated pixels P ‾ = P − μ ( P ) σ ( P ) \overline P=\frac{P-\mu(P)}{\sigma(P)} P=σ(P)Pμ(P)

Kullback-Leibler Divergence (KLDiv)

KLDiv ↓ \downarrow 是指KL散度,Kullback-Leibler (KL) 是一种广泛使用的信息论度量,用于衡量两个概率分布之间的差异。KLDiv越小说明该模型检测性能越好。

K L ( P , Q ) = Σ i Q i l o g ( ϵ + Q i ϵ + P i ) KL(P,Q)=\Sigma_iQ_ilog(\epsilon+\frac{Q_i}{\epsilon+P_i}) KL(P,Q)=ΣiQilog(ϵ+ϵ+PiQi)

其中 ϵ \epsilon ϵ表示正则化常数,KL是非对称差异度量

具体再参考:https://blog.csdn.net/matrix_space/article/details/80550561

  • 参考1:What Do Different Evaluation Metrics Tell Us About Saliency Models? IEEE TPAMI 2019
  • 参考2:Deep Visual Attention Prediction IEEE TIP 2018

2. 显著性目标检测

Mean Absolute Error

MAE是指平均绝对值偏差,用于评价预测的显著图和参考图之间的差别,MAE越小说明该算法性能越好;

M A E ↓ = 1 W × H ∑ W x = 1 ∑ H y = 1 ∣ S ‾ ( x , y ) − G ‾ ( x , y ) ∣ MAE \downarrow = \dfrac{1}{W \times H}\sum{W}_{x=1}\sum{H}_{y=1}| \overline{S}(x,y)-\overline{G}(x,y) | MAE=W×H1Wx=1Hy=1S(x,y)G(x,y)

PR曲线

Precise是差准率,Recall是查全率,将图像二值化之后计算:

TP

P r e c i s i o n = T P T P + F P Precision=\frac{TP}{TP+FP} Precision=TP+FPTP 以及 R e c a l l = T P T P + F N Recall=\frac{TP}{TP+FN} Recall=TP+FNTP

将输出图片S进行二值化时,阈值选择为从0到255,每取一个阈值,即可对所有输出图S算得一组相对应的Precision值与Recall值。最后将所有图像在该阈值下的Precision值与Recall值分别求平均,最后将会得到256对P,R值,以Recall为横坐标,Precision为纵坐标绘制曲线图即可得到precision-recall (PR)曲线。

F-measure

查全率查准率在非负权重β下的加权调和平均值(Weighted Harmonic Mean) ,计算公式如下:

F β ↑ = ( 1 + β 2 ) P r e c i s i o n ∗ R e c a l l β 2 P r e c i s i o n + R e c a l l F_\beta \uparrow =\frac{(1+\beta^2)Precision*Recall}{\beta^2Precision+Recall} Fβ=β2Precision+Recall(1+β2)PrecisionRecall

β 2 \beta^2 β2一般取值为0.3,即增加了Precision的权重值,认为查准率比查全率要重要些。因为当模型将输出图全部标为目标区域时,查全率Recall将等于100%,但是查准率Precision却很低。

  • ROC (Receiver Operating Characteristic curve)
  • AUC (Area Under Curve)
  • MAP (Mean Average Precision)
  • MAR (Mean Average Recall)

上述评价指标中,ROC与AUC相似于眼注视点任务,都是用不一样的阈值来肯定描点位置,而后将全部点链接起构成ROC曲线;

MAP是指平均精度率,MAR是指平均召回率,MAR和MAP越大说明算法性能越好。

3. 如何得到fixation map

计算以上这些指标的时候需要得到fixation map,好像可以考虑OpenCV里面的高斯模糊函数等。未完待续……

  • 0
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值