显著性目标检测评价指标Smeasure, wFmeasure, MAE, adpEm, meanEm, maxFm

 一、评价指标:

Smeasure (Structure Measure) 

        结构度量是一种综合评估指标,用于评估预测的分割结果与真实分割之间的结构相似性。它考虑了分割结果的边缘连通性、区域完整性和边界偏移等因素,值越接近1表示分割结果与真实分割结构越相似。

wFmeasure (Weighted F-measure)

        加权 F-measure是精度和召回率的加权平均值,其中精度衡量了分割结果中正确分类的像素数量,而召回率衡量了所有真实正例中被正确分类的像素数量。它通过平衡精度和召回率来评估分割结果的整体性能。

MAE (Mean Absolute Error)

        平均绝对误差是预测值与真实值之间差值的绝对值的平均值。在图像分割任务中,它衡量了预测边界位置与真实边界位置之间的平均距离,值越小表示预测结果与真实结果之间的差异越小。

adpEm (Adaptive E-measure)

        自适应 E-measure是一种结构相似性指标,用于评估分割结果与真实分割之间的结构相似性。与传统的结构度量不同,自适应 E-度量根据每个像素的局部特征动态调整权重,以更好地反映局部结构信息。

meanEm (Mean E-measure)

        平均 E-measure是自适应 E-measure在整个图像上的平均值,它衡量了分割结果与真实分割之间的平均结构相似性。

### 关于 PySODMetrics 的使用教程和项目地址 #### 项目地址 PySODMetrics 是一个简单高效的灰度/二值分割指标实现工具。其官方项目地址位于 GitCode 上,可以通过以下链接访问: [PySODMetrics 项目地址](https://gitcode.com/gh_mirrors/py/PySODMetrics)[^1] 如果希望查看原始 GitHub 仓库(尽管可能已被镜像),可以尝试通过以下链接访问: [PySODMetrics 原始 GitHub 地址](https://github.com/lartpang/PySODMetrics)[^4] --- #### 使用教程概述 以下是关于如何安装和使用 PySODMetrics 的基本指南: ##### 安装依赖项 确保已安装必要的 Python 库。通常情况下,`numpy` 和其他科学计算库是必需的。可通过运行以下命令来安装这些依赖项: ```bash pip install numpy scipy matplotlib scikit-image ``` ##### 下载并导入模块 下载 PySODMetrics 源码后,在脚本中引入相关功能模块即可。例如: ```python from py_sod_metrics import MAE, Emeasure, Fmeasure, Smeasure, WeightedFmeasure ``` ##### 计算分割评估指标 假设有一个预测掩模 `pred_mask` 和对应的真值标签 `gt_mask`,可按如下方式调用不同评价函数: ```python import numpy as np from py_sod_metrics import MAE, Emeasure, Fmeasure, Smeasure, WeightedFmeasure # 示例数据 (HxW),实际应用中应替换为真实图像尺寸的数据 pred_mask = np.random.rand(512, 512).astype(np.float32) gt_mask = (np.random.rand(512, 512) > 0.5).astype(np.uint8) mae_metric = MAE() emetric = Emeasure() fmetric = Fmeasure() smetric = Smeasure() wfmetric = WeightedFmeasure() mae_score = mae_metric(pred=pred_mask, gt=gt_mask) e_scores = emetric(pred=pred_mask, gt=gt_mask) f_measure = fmetric(pred=pred_mask, gt=gt_mask) s_measure = smetric(pred=pred_mask, gt=gt_mask) weighted_f_measure = wfmetric(pred=pred_mask, gt=gt_mask) print(f"MAE Score: {mae_score}") print(f"E-Measure Scores: {e_scores.mean()}") print(f"F-Measure: {f_measure['fm']}, Precision: {f_measure['precision'].mean()}, Recall: {f_measure['recall'].mean()}") print(f"S-Measure: {s_measure}") print(f"Weighted F-Measure: {weighted_f_measure}") ``` 上述代码展示了如何利用 PySODMetrics 中的不同类来计算多种常用的分割性能指标--- #### 特定功能解析 对于某些特定的功能实现细节,比如重心位置计算,可以从源码中找到具体逻辑[^4]。例如,重心坐标的计算基于输入矩阵 `matrix` 进行加权平均操作: ```python area_object = np.sum(matrix) # 对象区域总像素数 row_ids = np.arange(h) # 行索引数组 col_ids = np.arange(w) # 列索引数组 x = np.round( np.sum(np.sum(matrix, axis=0) * col_ids) / area_object ) # X 轴方向上的重心坐标 y = np.round( np.sum(np.sum(matrix, axis=1) * row_ids) / area_object ) # Y 轴方向上的重心坐标 ``` 此部分代码可用于分析目标对象的空间分布特性。 --- #### 注意事项 当同步本地更改至远程存储库时,需注意分支管理策略。例如,若要删除远端某一分支,则执行以下命令: ```bash git push origin :<branch_name> ``` 这一步骤的具体说明可在通用 GitHub 教程中查阅[^3]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只懒洋洋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值