免费实用!16款 Stable Diffusion 插件全面测评

img
随着 Stable Diffusion 的不断进化,越来越多的开发者加入到插件开发的行列中。大家都知道网上虽然教程多,但非常碎片,一个个学习和查阅真的非常耗时,感觉每天都在烧脑。如果你是 SD 小白或者是小懒猫,又想快速上手使用 Stable Diffusion 插件,那么这篇文章就非常适合你了!因为这是以设计师日常应用的角度出发,从推荐指数、易上手程度、使用频率三个维度来测评。

一、前方高能

1. prompt-all-in-one 提示词翻译补全(自动翻译)

推荐指数:☆☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆☆

能做什么:prompt-all-in-one 提示词翻译补全可以帮助英文不好的用户,快速弥补英文短板。其中包含,中文输入自动转英文、自动保存使用描述词、描述词历史记录、快速修改权重、收藏常用描述词、翻译接口可以多种选择、一键粘贴删除描述词等。

img

扩展地址: https://github.com/Physton/sd-webui-prompt-all-in-one

2. SixGod 提示词插件

推荐指数:☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆

能做什么:SixGod 提示词插件可以帮助用户快速生成逼真、有创意的图像。其中包含,清空正向提示词”和“清空负向提示词、提示词起手式包含人物、服饰、人物发型等各个维度的提示词、一键清除正面提示词与负面提示词、随机灵感关键词、提示词分类组合随机、动态随机语法等。

img

扩展地址: https://github.com/thisjam/sd-webui-oldsix-prompt

3. After Detailer 人脸及手部修复插件

推荐指数:☆☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆

能做什么:After Detailer 是一款强大的图像编辑工具,可用于修复和编辑图像。自动修复图像中的瑕疵 ,无论是 2D 还是真实的人脸及手部都可以通过识别面部/人物/手部并自动对其进行 mask 和重绘的工具,可以通过调整参数去改变识别的对象和识别区域的大小及位置等。

img

扩展地址: https://github.com/Bing-su/adetailer

4. Tagger 提示词反推

推荐指数:☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆

能做什么:Tagger 提示词反推可以从任意图片中提取。帮助理解图像的内容、创建创意图像、分析图像数据。

img

扩展地址: https://github.com/pythongosssComfyUI-WD14-Tagger?tab=readme-ov-file

5. Inpaint Anything 蒙版换装换脸

推荐指数:☆☆☆☆

易上手程度:☆☆☆

使用频率:☆☆

能做什么:Inpaint Anything 是一款强大的图像编辑工具,可用于删除和替换图像中的任何内容。它使用人工智能来自动识别和修复图像中的缺陷,无需使用遮罩。删除图像中的不需要的对象或瑕疵、修复图像中的损坏、替换图像中的对象或背景、创建创意图像效果。

img

扩展地址: https://github.com/Uminosachi/sd-webui-inpaint-anything

6. Segment Anything 识别分割图片中的物体

推荐指数:☆☆☆

易上手程度:☆☆

使用频率:☆

能做什么:Segment Anything 是一款强大的图像分割工具,可用于自动识别和分割图像中的不同对象。类似于 controlnet 中的 SEG 语义分割,但 Segment Anything 是功能更强大、准确性更高、易用性也更高的图像分割工具, 但学习成本更高。

img

扩展地址: https://github.com/facebookresearch/segment-anything.git

7. ultimate SD upscale 图片放大

推荐指数:☆☆☆☆

易上手程度:☆☆☆☆

使用频率:☆☆☆☆

能做什么:Ultimate SD Upscale 是一款强大的图像超分辨率工具,可用于将低分辨率图像提升到高分辨率、减少噪声和模糊。Ultimate SD Upscale 使用的超分辨率模型是基于深度学习的,因此具有较高的准确性。

img

扩展地址: https://github.com/Coyote-A/ultimate-upscale-for-automatic1111.git

**8. Tiled Diffusion **

推荐指数:☆☆☆

易上手程度:☆☆

使用频率:☆☆☆

能做什么:Tiled Diffusion 同样是图像超分辨率、修复图像瑕疵的工具。Tiled Diffusion 适合小显存,速度更快,细节添加更可控,也不容易崩坏。

img

扩展地址: https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111

本人用 Ultimate SD Upscale 最多,因为它相对更有发挥空间。而 Tiled Diffusion 是可以让图片看起来更逼真。、

**10. Additional Networks **

推荐指数:☆☆

易上手程度:☆

使用频率:☆

能做什么:Additional Networks 是一个由 Google AI 开发的插件,可用于模型中添加额外的 LoRA,也可帮我们控制多个 LoRA 模型生成混合风格的图像,从而提升图片的独创性。

img

扩展地址: https://github.com/kohya-ss/sd-webui-additional-networks.git

11. Image-recognition 图片信息识别

推荐指数:☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆

能做什么:sd-webui-图片信息识别是一个由 Google AI 开发的开源插件,可基于图片识别模型、图片中的物体、场景、人物等信息,并将其输出为文本。

img

扩展地址: https://github.com/google/sd-webui-image-recognition

12. Openpose Editor 姿态编辑

推荐指数:☆☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆☆

能做什么:识别图片中的人物姿态,可以根据需求随意调整人物的姿势,例如武术、手托腮、人物复杂姿态。

img

13. DWpose 手部修复

推荐指数:☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆☆☆

能做什么:普通 OpenPose 模型的强化版,对手部动态识别有更好的理解能力,对复杂的穿插关系的姿态识别表现出众。

img

扩展地址: https://github.com/IDEA-Research/DWPose

**14. IP-Adaper **

推荐指数:☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆☆

能做什么:IP-Adapter 是腾讯的另一个实验室 Tencent AI Lab 研发的控图模型。名称中的 IP 指的是 Image Prompt 图像提示,它和 T2I-Adapter 一样是一款小型模型,用于风格迁移、可理解为垫图。

img

扩展地址: https://github.com/tencent-ailab/IP-Adapter ; https://ip-adapter.github.io/

15. Recolor 重新上色

推荐指数:☆☆☆☆

易上手程度:☆☆☆☆☆

使用频率:☆

能做什么:Recolor 是给图片填充颜色,非常适合修复一些黑白老旧照片和去过色的图片。

img

16. T2I-Adapter 文生图适配器

推荐指数:☆☆☆☆

易上手程度:☆

使用频率:☆☆

能做什么:T2I-Adapter 由腾讯 ARC 实验室和北大视觉信息智能学习实验室联合研发的一款小型模型,它的作用是为各类文生图模型提供额外的控制引导,同时又不会影响原有模型的拓展和生成能力。T2I-Adapter 的特点是体积小,参数级只有 77M,但对图像的控制效果不错。

img

扩展地址: https://huggingface.co/TencentARC/T2I-Adapter/tree/main/models

总体而言,Stable Diffusion 功能非常强大、也逐渐变得易于使用了。如果你还没有尝试过 SD,我强烈建议你试试看。它一定会给你带来惊喜!

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

1.stable diffusion安装包 (全套教程文末领取哈)

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍代码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入门stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

请添加图片描述

<think>好的,我需要帮助用户找到与Stable Diffusion相关的插件、模型以及使用教程。首先,我需要确认用户提到的SD是否确实指Stable Diffusion,根据提供的引用内容,这应该是正确的。接下来,根据用户提供的引用信息,有几个插件和模型已经被提到,比如ControlNet、本地化中文插件、模型工具包和数据集标签编辑器等。我需要将这些信息整理出来,并补充一些常见的插件和模型,确保覆盖下载、安装和使用教程等方面。 首先,引用[1]提到的是一个本地安装教程和模型应用,引用[2]是关于本地化中文插件的GitHub仓库,引用[3]是ControlNet插件的安装网址,引用[4]是数据集标签编辑器的使用说明。我需要确保每个部分都包含下载链接、安装步骤和基本使用方法,同时参考用户提供的引用来源。 接下来,我需要考虑用户可能需要的问题,比如如何安装插件、推荐哪些模型、如何处理标签等。根据引用内容,用户可能对批量编辑标签感兴趣,所以需要详细说明引用[4]中的方法。同时,ControlNet作为重要插件,需要重点介绍其功能和应用场景。 另外,模型下载部分需要推荐几个热门模型,如ChilloutMix和DreamShaper,并指导用户如何安装和使用。可能还需要提到模型管理工具,如引用[2]中的模型工具包,帮助用户更好地管理他们的模型。 在教程资源方面,引用[1]提供了一个5分钟安装教程,可以推荐给新手用户。此外,官方文档和社区论坛也是重要的资源,应该包含在内。 最后,生成的相关问题需要覆盖用户可能进一步询问的方向,比如安装问题、模型选择、标签编辑和高级功能等,确保用户能够找到后续的帮助信息。 现在需要将这些内容组织成结构清晰的回答,分点列出插件、模型、教程,每个部分都包含名称、功能、下载链接和使用说明,并正确标注引用来源。同时,语言要简洁明了,符合中文表达习惯,避免使用Markdown格式,但按照用户的要求使用$...$和$$...$$格式处理数学表达式。不过在这个问题中,数学表达式可能不相关,所以可能不需要使用。不过需要检查是否有提到数学相关内容,但看起来主要是关于Stable Diffusion插件和模型,因此可能不需要数学格式。但根据用户指令,所有行内数学表达式必须使用$...$,但当前问题中没有数学内容,所以可能不需要处理,但需确保其他格式正确。 总结步骤: 1. 整理插件部分,包括ControlNet、中文本地化、模型工具包、数据集标签编辑器。 2. 模型推荐部分,包括热门模型和安装方法。 3. 教程资源,包括安装教程、官方文档、社区论坛。 4. 生成相关问题,覆盖安装、模型选择、标签处理、高级应用等。 5. 确保每个引用正确标注,如[^1]、[^2]等。 6. 检查是否符合系统级指令,特别是中文回答、引用标识、结构清晰等。</think>### Stable Diffusion 插件与模型推荐及使用教程 #### 一、常用插件推荐 1. **ControlNet** - **功能**:通过添加额外控制条件(如边缘检测、姿态估计)精确控制图像生成[^3]。 - **安装方法**: - 在Stable Diffusion WebUI的“Extensions”选项卡中,输入插件仓库地址:`https://github.com/Mikubill/sd-webui-controlnet`,点击安装。 - 重启WebUI后,在“Settings”中更新ControlNet模型。 2. **中文本地化插件** - **功能**:将WebUI界面汉化,方便中文用户操作[^2]。 - **安装方法**: - 下载仓库文件:`https://github.com/hanamizuki-ai/stable-diffusion-webui-localization-zh_Hans.git`,复制到WebUI的`extensions`目录。 - 在WebUI的“Settings”中选择“Chinese (中文)”语言。 3. **模型工具包(Model Toolkit)** - **功能**:管理模型文件(如合并、修剪、转换格式)。 - **安装方法**:在插件市场中搜索“stable-diffusion-webui-model-toolkit”并安装。 4. **数据集标签编辑器** - **功能**:批量编辑训练数据集的标签,删除冗余特征词[^4]。 - **使用步骤**: 1. 下载插件stable-diffusion-webui-dataset-tag-editor-main”并放入`extensions`目录[^4]。 2. 在WebUI中进入该插件,勾选需删除的标签(如“初春特征”),执行批量删除并保存。 --- #### 二、热门模型推荐与安装 1. **ChilloutMix** - **特点**:擅长生成真实系人像,适合写实风格。 - **下载地址**:CivitAI、Hugging Face等平台。 - **安装方法**:将模型文件(`.ckpt`或`.safetensors`)放入WebUI的`models/Stable-diffusion`目录。 2. **DreamShaper** - **特点**:适用于动漫、插画风格,渲染效果细腻。 - **安装步骤**:同上,需重启WebUI加载模型。 3. **ControlNet预处理器模型** - **用途**:与ControlNet插件配合使用,需下载对应的`.pth`文件至`extensions/sd-webui-controlnet/models`目录。 --- #### 三、教程资源 1. **本地安装教程** - 参考《5分钟Stable Diffusion本地安装-秋叶整合包》完成基础部署[^1]。 2. **官方文档与社区** - WebUI的GitHub Wiki:提供插件开发、模型训练指南。 - CivitAI论坛:分享模型评测及使用案例。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值