CINTA第六次作业

1. 根 据 命 题 9.5 , H 是 G 的 正 规 子 群 当 且 仅 当 对 任 意 g ∈ G , 有 g H g − 1 = H 。 实 际 上 , 条 件 可 以 放 松 到 只 证 明 g H g − 1 ⊂ H 。 请 给 出 证 明 。 1.根据命题9.5,H是G的正规子群当且仅当对任意g∈G,有 gHg^{ −1} = H。实 际上,条件可以放松到只证明 gHg ^{−1} ⊂ H。请给出证明。 1.9.5HGgGgHg1=HgHg1H
证明:
∀ g ∈ G , g H g − 1 ⊂ H , 由 此 可 得 , g H ⊂ H g , 因 此 , H ⊂ g − 1 H g \forall g \in G,gHg^{-1}\subset H,由此可得,gH\subset Hg,因此,H\subset g^{-1}Hg gG,gHg1H,gHHg,Hg1Hg
所 以 H ⊂ g − 1 H ( g − 1 ) − 1 , 即 为 H ⊂ g H g − 1 所以H\subset g^{-1}H(g^{-1})^{-1},即为H\subset gHg^{-1} Hg1H(g1)1,HgHg1
因 此 , g H g − 1 ⊂ H , g H g − 1 = H , g H = H g 因此,gHg^{-1}\subset H,gHg^{-1}=H,gH=Hg gHg1H,gHg1=H,gH=Hg
所 以 H 是 G 的 正 规 子 群 , 命 题 得 证 所以H是G的正规子群,命题得证 HG

2. 定 义 映 射 ϕ : G ↦ G 为 : g ↦ g 2 。 请 证 明 ϕ 是 一 种 群 同 态 当 且 仅 当 G 是 阿 贝 尔 群 。 定义映射 ϕ : G \mapsto G 为:g \mapsto g 2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。 ϕ:GGgg2ϕG
证明:
充分性:
由 于 ϕ 是 群 同 态 , 对 任 意 a , b ∈ G , 有 ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) , ( a b ) 2 = a 2 b 2 , a b ⋅ a b = a ⋅ a b ⋅ b 由于ϕ是群同态,对任意a,b\in G,有ϕ(a·b)=ϕ(a)∘ϕ(b),(ab)^{2}=a^{2}b^{2},ab·ab=a·ab·b ϕa,bG,ϕ(ab)=ϕ(a)ϕ(b)(ab)2=a2b2,abab=aabb
由 消 去 律 , 得 b ⋅ a = a ⋅ b , 因 此 G 是 阿 贝 尔 群 , 充 分 性 得 证 由消去律,得b·a=a·b,因此G是阿贝尔群,充分性得证 ba=ab,G
必要性:
由 于 G 是 阿 贝 尔 群 , 因 此 对 任 意 a , b ∈ G , 有 ϕ ( a ⋅ b ) = ( a ⋅ b ) 2 = a b ⋅ a b = a a ⋅ b b = a 2 ⋅ b 2 = ϕ ( a ) ∘ ϕ ( b ) 由于G是阿贝尔群,因此对任意a,b\in G,有ϕ(a⋅b)=(a⋅b) ^{2} =ab⋅ab=aa⋅bb=a ^{2}⋅b ^{2} =ϕ(a)∘ϕ(b) Ga,bG,ϕ(ab)=(ab)2=abab=aabb=a2b2=ϕ(a)ϕ(b)
因 此 ϕ 是 一 种 群 同 态 , 必 要 性 得 证 因此ϕ是一种群同态,必要性得证 ϕ
命题得证

3. 设 ϕ : G ↦ H 是 一 种 群 同 态 。 请 证 明 : 如 果 G 是 循 环 群 , 则 ϕ ( G ) 也 是 循 环 群 ; 如 果 G 是 交 换 群 , 则 ϕ ( G ) 也 是 交 换 群 。 设 ϕ : G \mapsto H 是一种群同态。请证明:如果 G 是循环群,则 ϕ(G) 也是循环群;如果 G 是交换群,则 ϕ(G) 也是交换群。 ϕ:GHGϕ(G)Gϕ(G)
证明:
因 为 G 为 循 环 群 , 所 以 存 在 g 为 G 的 生 成 元 因为G为循环群,所以存在g为G的生成元 GgG
则 g m = e , 对 任 意 a ∈ G , f ( a ) = ϕ ( g m ) = ϕ ( g ) m , ϕ ( g ) 也 是 群 G 的 生 成 元 , 因 此 , 如 果 G 是 循 环 群 , 则 ϕ ( G ) 也 是 循 环 群 则g^{m}=e,对任意a\in G,f(a)=ϕ(g^{m})=ϕ(g)^{m},ϕ(g)也是群G的生成元,因此,如果 G 是循环群,则 ϕ(G) 也是循环群 gm=e,aG,f(a)=ϕ(gm)=ϕ(g)m,ϕ(g)GGϕ(G)
因 为 G 为 交 换 群 , 任 取 a , b ∈ G , 有 a ⋅ b = b ⋅ a , 因 为 ϕ : G → H 是 群 同 态 , 所 以 ϕ ( a ∘ b ) = ϕ ( a ) ∘ ϕ ( b ) , ϕ ( b ∘ a ) = ϕ ( b ) ∘ ϕ ( a ) , ϕ ( a ) ∘ ϕ ( b ) = ϕ ( b ) ∘ ϕ ( a ) 因为G为交换群,任取a,b\in G,有a·b=b·a,因为ϕ:G→H是群同态,所以 ϕ( a ∘b ) =ϕ(a)∘ϕ(b),ϕ( b ∘ a ) = ϕ(b)∘ϕ(a),ϕ(a)∘ϕ(b)=ϕ(b)∘ϕ(a) Ga,bG,ab=ba,ϕ:GHϕ(ab)=ϕ(a)ϕ(b)ϕ(ba)=ϕ(b)ϕ(a)ϕ(a)ϕ(b)=ϕ(b)ϕ(a)
因 此 , 如 果 G 是 交 换 群 , 则 ϕ ( G ) 也 是 交 换 群 因此,如果 G 是交换群,则 ϕ(G) 也是交换群 Gϕ(G)

4.证明:如果H是群G上指标为2 的子群,则H是G的正规子群
证明:
因 为 H 是 群 G 上 指 标 为 2 的 子 群 因为H是群G上指标为2 的子群 HG2
g ∈ H , g h 1 = h 2 g ∈ H , 即 g H = H g g∈H,gh1=h2g∈H,即gH = Hg gHgh1=h2gH,gH=Hg
g ∉ H , g h ∈ G − H , h g ∈ G − H , 即 g H = H g 。 g∉ H,gh ∈G−H,hg∈G−H,即gH = Hg。 g/HghGHhgGHgH=Hg
所以H是G的正规子群,命题得证

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值