1.
根
据
命
题
9.5
,
H
是
G
的
正
规
子
群
当
且
仅
当
对
任
意
g
∈
G
,
有
g
H
g
−
1
=
H
。
实
际
上
,
条
件
可
以
放
松
到
只
证
明
g
H
g
−
1
⊂
H
。
请
给
出
证
明
。
1.根据命题9.5,H是G的正规子群当且仅当对任意g∈G,有 gHg^{ −1} = H。实 际上,条件可以放松到只证明 gHg ^{−1} ⊂ H。请给出证明。
1.根据命题9.5,H是G的正规子群当且仅当对任意g∈G,有gHg−1=H。实际上,条件可以放松到只证明gHg−1⊂H。请给出证明。
证明:
∀
g
∈
G
,
g
H
g
−
1
⊂
H
,
由
此
可
得
,
g
H
⊂
H
g
,
因
此
,
H
⊂
g
−
1
H
g
\forall g \in G,gHg^{-1}\subset H,由此可得,gH\subset Hg,因此,H\subset g^{-1}Hg
∀g∈G,gHg−1⊂H,由此可得,gH⊂Hg,因此,H⊂g−1Hg
所
以
H
⊂
g
−
1
H
(
g
−
1
)
−
1
,
即
为
H
⊂
g
H
g
−
1
所以H\subset g^{-1}H(g^{-1})^{-1},即为H\subset gHg^{-1}
所以H⊂g−1H(g−1)−1,即为H⊂gHg−1
因
此
,
g
H
g
−
1
⊂
H
,
g
H
g
−
1
=
H
,
g
H
=
H
g
因此,gHg^{-1}\subset H,gHg^{-1}=H,gH=Hg
因此,gHg−1⊂H,gHg−1=H,gH=Hg
所
以
H
是
G
的
正
规
子
群
,
命
题
得
证
所以H是G的正规子群,命题得证
所以H是G的正规子群,命题得证
2.
定
义
映
射
ϕ
:
G
↦
G
为
:
g
↦
g
2
。
请
证
明
ϕ
是
一
种
群
同
态
当
且
仅
当
G
是
阿
贝
尔
群
。
定义映射 ϕ : G \mapsto G 为:g \mapsto g 2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。
定义映射ϕ:G↦G为:g↦g2。请证明ϕ是一种群同态当且仅当G是阿贝尔群。
证明:
充分性:
由
于
ϕ
是
群
同
态
,
对
任
意
a
,
b
∈
G
,
有
ϕ
(
a
⋅
b
)
=
ϕ
(
a
)
∘
ϕ
(
b
)
,
(
a
b
)
2
=
a
2
b
2
,
a
b
⋅
a
b
=
a
⋅
a
b
⋅
b
由于ϕ是群同态,对任意a,b\in G,有ϕ(a·b)=ϕ(a)∘ϕ(b),(ab)^{2}=a^{2}b^{2},ab·ab=a·ab·b
由于ϕ是群同态,对任意a,b∈G,有ϕ(a⋅b)=ϕ(a)∘ϕ(b),(ab)2=a2b2,ab⋅ab=a⋅ab⋅b
由
消
去
律
,
得
b
⋅
a
=
a
⋅
b
,
因
此
G
是
阿
贝
尔
群
,
充
分
性
得
证
由消去律,得b·a=a·b,因此G是阿贝尔群,充分性得证
由消去律,得b⋅a=a⋅b,因此G是阿贝尔群,充分性得证
必要性:
由
于
G
是
阿
贝
尔
群
,
因
此
对
任
意
a
,
b
∈
G
,
有
ϕ
(
a
⋅
b
)
=
(
a
⋅
b
)
2
=
a
b
⋅
a
b
=
a
a
⋅
b
b
=
a
2
⋅
b
2
=
ϕ
(
a
)
∘
ϕ
(
b
)
由于G是阿贝尔群,因此对任意a,b\in G,有ϕ(a⋅b)=(a⋅b) ^{2} =ab⋅ab=aa⋅bb=a ^{2}⋅b ^{2} =ϕ(a)∘ϕ(b)
由于G是阿贝尔群,因此对任意a,b∈G,有ϕ(a⋅b)=(a⋅b)2=ab⋅ab=aa⋅bb=a2⋅b2=ϕ(a)∘ϕ(b)
因
此
ϕ
是
一
种
群
同
态
,
必
要
性
得
证
因此ϕ是一种群同态,必要性得证
因此ϕ是一种群同态,必要性得证
命题得证
3.
设
ϕ
:
G
↦
H
是
一
种
群
同
态
。
请
证
明
:
如
果
G
是
循
环
群
,
则
ϕ
(
G
)
也
是
循
环
群
;
如
果
G
是
交
换
群
,
则
ϕ
(
G
)
也
是
交
换
群
。
设 ϕ : G \mapsto H 是一种群同态。请证明:如果 G 是循环群,则 ϕ(G) 也是循环群;如果 G 是交换群,则 ϕ(G) 也是交换群。
设ϕ:G↦H是一种群同态。请证明:如果G是循环群,则ϕ(G)也是循环群;如果G是交换群,则ϕ(G)也是交换群。
证明:
因
为
G
为
循
环
群
,
所
以
存
在
g
为
G
的
生
成
元
因为G为循环群,所以存在g为G的生成元
因为G为循环群,所以存在g为G的生成元
则
g
m
=
e
,
对
任
意
a
∈
G
,
f
(
a
)
=
ϕ
(
g
m
)
=
ϕ
(
g
)
m
,
ϕ
(
g
)
也
是
群
G
的
生
成
元
,
因
此
,
如
果
G
是
循
环
群
,
则
ϕ
(
G
)
也
是
循
环
群
则g^{m}=e,对任意a\in G,f(a)=ϕ(g^{m})=ϕ(g)^{m},ϕ(g)也是群G的生成元,因此,如果 G 是循环群,则 ϕ(G) 也是循环群
则gm=e,对任意a∈G,f(a)=ϕ(gm)=ϕ(g)m,ϕ(g)也是群G的生成元,因此,如果G是循环群,则ϕ(G)也是循环群
因
为
G
为
交
换
群
,
任
取
a
,
b
∈
G
,
有
a
⋅
b
=
b
⋅
a
,
因
为
ϕ
:
G
→
H
是
群
同
态
,
所
以
ϕ
(
a
∘
b
)
=
ϕ
(
a
)
∘
ϕ
(
b
)
,
ϕ
(
b
∘
a
)
=
ϕ
(
b
)
∘
ϕ
(
a
)
,
ϕ
(
a
)
∘
ϕ
(
b
)
=
ϕ
(
b
)
∘
ϕ
(
a
)
因为G为交换群,任取a,b\in G,有a·b=b·a,因为ϕ:G→H是群同态,所以 ϕ( a ∘b ) =ϕ(a)∘ϕ(b),ϕ( b ∘ a ) = ϕ(b)∘ϕ(a),ϕ(a)∘ϕ(b)=ϕ(b)∘ϕ(a)
因为G为交换群,任取a,b∈G,有a⋅b=b⋅a,因为ϕ:G→H是群同态,所以ϕ(a∘b)=ϕ(a)∘ϕ(b),ϕ(b∘a)=ϕ(b)∘ϕ(a),ϕ(a)∘ϕ(b)=ϕ(b)∘ϕ(a)
因
此
,
如
果
G
是
交
换
群
,
则
ϕ
(
G
)
也
是
交
换
群
因此,如果 G 是交换群,则 ϕ(G) 也是交换群
因此,如果G是交换群,则ϕ(G)也是交换群
4.证明:如果H是群G上指标为2 的子群,则H是G的正规子群
证明:
因
为
H
是
群
G
上
指
标
为
2
的
子
群
因为H是群G上指标为2 的子群
因为H是群G上指标为2的子群
g
∈
H
,
g
h
1
=
h
2
g
∈
H
,
即
g
H
=
H
g
g∈H,gh1=h2g∈H,即gH = Hg
g∈H,gh1=h2g∈H,即gH=Hg
g
∉
H
,
g
h
∈
G
−
H
,
h
g
∈
G
−
H
,
即
g
H
=
H
g
。
g∉ H,gh ∈G−H,hg∈G−H,即gH = Hg。
g∈/H,gh∈G−H,hg∈G−H,即gH=Hg。
所以H是G的正规子群,命题得证