RMQ

现在给你一个问题:给你一个数组 ,其中有N个数字,现在给你一次询问,给你区间[l ,r],问你在这个区间内的最大值为多少?
哇!这题简单啊,一个for循环,遍历数组记录最大值输出即可啊。
那好,现在我告诉你假设N为50000,给你Q次询问((1 ≤ Q ≤ 200,000)),如果这种情况,我们还每次都进行暴力遍历求解的话,这时算法耗时就会很长,并且可能会超时。
是的,这种暴力遍历求解虽然思维简单,代码简短,但是很慢啊。

那该怎么做呢?这时候就需要RMQ算法来解决这个问题

RMQ(Range Minimum/Maximum Query),即区间最值查询。RMQ算法一般用较长时间做预处理,时间复杂度为O(nlogn),然后可以在O(1)的时间内处理每次查询。

下面我们从一个实际问题来解释RMQ

我们假设数组arr为:1,2,6,8,4,3,7

我们设二维数组dp[i][j]表示从第i位开始连续 2^j 个数中的最小值。例如dp[2][1]就表示从第二位数开始连续两个数的最小值(也就是从第二位数到第三位数的最小值),即2,6中的最小值,所以dp[2][1] = 2;

其实我们求 dp[i][j] 的时候可以把它分成两部分,第一部分是从 i 到 i+2^ (j-1)-1 ,第二部分从i+2^(j-1) 到i+2^j-1 ,为什么可以这么分呢?其实我们都知道二进制数前一个数是后一个的两倍,那么可以把 i 到 i+2^j-1 这个区间通过2(j-1^)分成相等的两部分, 那么转移方程很容易就写出来了。(dp[i][0]就表示第i个数字本身)

dp[i][j] = min(dp [i][j - 1], dp [i + (1 << j - 1)][j - 1])
(1<<j-1即为2的j-1次方,注意是1<<j-1而不是j-1<<1)

由此给出下列代码:

void rmq_init()
{
    for(int i=1;i<=N;i++)
        dp[i][0]=arr[i];//初始化
    for(int j=1;(1<<j)<=N;j++)//2的j次方小于等于N
        for(int i=1;i+(1<<j)-1<=N;i++)//i+2^j-1区间最右边小于等于N
            dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}

这里需要注意一个循环变量的顺序,我们看到外层循环变量为j,内层循环变量为i,这是为什么呢?可以互换一下位置吗?

答案当然是不可以,我们要理解这个状态转移方程的意义,这个状态方程的含义是:先更新每两个元素中的最小值,然后通过每两个元素的最小值获得每4个元素中的最小值,依次类推更新所有长度的最小值。

而如果是i在外,j在内的话,我们更新的顺序就变成了从1开始的前1个元素,前2个元素,前4个元素,前8个元素。。。

当j等于3的时候
dp[1][3] =min(min(ans[0],ans[1],ans[2],ans[3]),min(ans[4],ans[5],ans[6],ans[7])))的值,

但是我们根本没有计算min(ans[0],ans[1],ans[2],ans[3])和min(ans[4],ans[5],ans[6],ans[7]),所以这样的方法肯定是错误的。

为了避免这样的错误,一定要好好理解这个状态转移方程所代表的含义。

接下来我们来讲解RMQ的查询部分,假设我们需要查询区间
[l ,r]中的最小值,令k = log2(r-l+1) , 则区间[l, r]的最小值RMQ[l,r] = min(dp[l][k], dp[r - (1 << k) + 1][k]);

但是为什么这样就可以保证是区间最小值了呢?
设区间长度L=r-l+1
区间长度 L 不一定刚好是 2 的多少次方,又因为 log 2(L) 是向下取整,那么 2^k 就有可能小于 L,这样的话,我们就不能直接用
dp [ l ][ k ] 来表示答案,不然的话会有遗漏

正确的做法是我们就从 l 往右取 2^k 个(即 dp[ l ][ k ]),从 r 往左取 2^k 个(即 dp[ r - ( 1 << k ) + 1 ][ k ]),这样就能保证区间 [ l , r ] 都被访问到了,重复计算的不用担心,这是计算最值而不是求和

dp[l][k]维护的是区间 [l, l + 2^k - 1] , dp[r - (1 << k) + 1][k]维护的是区间 [r - 2^k + 1, r] 。

那么只要我们保证r-2^k+1 ≤ l+2^k-1就能保证RMQ[l,r] = min(dp[l][k], dp[r - (1 << k) + 1][k]);

接下来我们用分析法来证明这个不等式:

我们假设 r-2^k+1 ≤ l+2^k-1 这个等式成立

即有 r - l + 2 ≤ 2^(k+1) 也就是 r - l + 2 ≤ 2*2^k

又因为 k = log2(r-l+1);

那么 r - l + 2 ≤ 2 * (r - l +1)

则 r - l + 2 ≤ 2*(r - l) + 2

即 r - l ≤ 2*(r-l)

所以 r - l ≥ 0,即假设成立

我们举个例子, l = 4,r = 6;

假设数组arr为:1,2,6,8,4,3,7

此时 k = log2(r-l+1) = log2(3) = 1

则区间[4,6]的最小值 = min(dp[4][1],dp[5][1])

dp[4][1] = 4,dp[5][1] = 3,所以区间[4,6]的最小值 = min(dp[4][1],dp[5][1]) = 3

我们很容易看出来答案是正确的。

由此给出查询部分代码:

int rmq(int l,int r)
{
    int k=log2(r-l+1);
    return min(dp[l][k],dp[r-(1<<k)+1][k]);

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值