使用本地 LLM 构建 Llama 3.1 8b Streamlit 聊天应用程序:使用 Ollama 的分

介绍

大型语言模型(LLMs)彻底改变了人工智能领域,提供了令人印象深刻的语言理解和生成能力。

图片

本文将指导您构建一个使用本地LLM的Streamlit聊天应用程序,特别是来自Meta的Llama 3.1 8b模型,通过Ollama库进行集成。

前提条件

在我们深入代码之前,请确保您已安装以下内容:

  • Python
  • Streamlit
  • Ollama

设置 Ollama 和下载 Llama 3.1 8b

首先,您需要安装 Ollama 并下载 Llama 3.1 8b 模型。打开命令行界面并执行以下命令:

在这里插入图片描述

创建 Modelfile

要创建一个与您的 Streamlit 应用无缝集成的自定义模型,请按照以下步骤操作:

  1. 在您的项目目录中,创建一个名为 Modelfile 的文件,不带任何扩展名。
  2. 在文本编辑器中打开 Modelfile,并添加以下内容:
model: llama3.1:8b

此文件指示 Ollama 使用 Llama 3.1 8b 模型。

代码

导入库和设置日志记录

在这里插入图片描述

  • streamlit as st:这导入了 Streamlit,一个用于创建交互式网页应用的库。
  • ChatMessageOllama:这些是从 llama_index 库中导入的,用于处理聊
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值