【百度云】【深度学习平台】【Python】【Jupyter Notebook】跑实验踩过的坑

本文分享了在百度云深度学习平台使用JupyterNotebook进行代码实验的经验,包括如何从BOS传输数据集到集群,解决从GitHub下载预训练模型速度慢的问题。

【百度云】【深度学习平台】【Python】【Jupyter Notebook】
写下这个帖子 是为了记录一下之前折腾代码实验 踩过的一些坑
给自己写个备忘 也给有遇到相同问题的读者 一个解决思路

  1. 先把我自己在百度云的深度学习平台上跑的这个步骤记录一下吧
    【坑1:将数据集从BOS传到集群上】
    数据集存储在百度云的BOS上
    代码运行平台使用的是深度学习平台创建的集群 用Jupyter Notebook进行代码编译

(1)创建集群 打开Jupyter Notebook上传代码;记下公网IP和设置的密码 用PUTTY远程登录服务器,准备将数据集从BOS上传到集群。
(2)打开PUTTY,输入公网IP,选择登录身份root,输入密码,远程登录服务器。
用命令行 wget -P (目标路径) (BOS上文件的链接) ///
举个栗子:wget -P /mnt/ https://www.nwpu.com/NWPU1_10.h5
这样就能将存在BOS的数据集传到集群上 和代码放在一起(这里我都是把数据集放在/mnt/目录下,而代码默认是放在/home/work/目录下)
(3)打开集群上的Jupyter Notebook,运行代码就完事儿了。

  1. 【坑2:用集群上的Jupyter Notebook跑代码,代码里需要从GitHub上下载预训练模型,速度极其缓慢】
    由于集群带宽很小,并且集群上并没有VPN,所以从外网下载模型速度会非常慢。所以:
    自行到GitHub上将预训练模型下载下来,上传到BOS,再用wget的方式传到集群中,放在/home/work/.keras/models/目录下即可。(网上很多都是说直接放在~/.keras/models/,但实际上应该把预训练模型放在代码的工作目录下的models文件夹中)
### 百度云服务器上的深度学习环境配置 为了在百度云服务器上顺利开展深度学习项目,前期准备工作至关重要。这不仅涉及基础架构的选择,还包括软件栈的搭建以及特定框架的支持。 #### 选择合适的实例类型 针对深度学习任务的特点——计算密集型工作负载,建议选用配备高性能GPU资源的实例型号[^1]。这类实例能够显著加速神经网络训练过程中的矩阵运算速度,从而缩短整体开发周期并提高效率。 #### 创建安全组规则 创建虚拟机之前需先规划好网络安全策略。通过合理设置入站/出站流量控制列表(ACL),可以有效保障远程访问的安全性的同时允许必要的通信端口开放给外部连接请求,比如SSH登录、HTTP(S) Web服务等操作所需使用的默认TCP端口号22,80,443等。 #### 安装依赖库与工具链 完成上述步骤之后即可着手准备安装Python解释器及相关科学计算包如NumPy,Pandas; 同时也要确保CUDA Toolkit版本匹配所选显卡驱动程序规格说明书中给出的要求范围之内;最后不要忘记下载目标平台官方发布的预编译二进制文件形式存在的TensorFlow或者PaddlePaddle Python Wheel分发版来简化后续集成测试环节的工作量。 ```bash sudo apt-get update && sudo apt-get install -y python3-pip git cmake g++ pip3 install --upgrade pip setuptools wheel pip3 install numpy pandas matplotlib scikit-learn opencv-python paddlepaddle-gpu==2.3.0.post110+cu110 ``` #### 配置Jupyter Notebook作为交互式编程界面 考虑到实际应用过程中可能频繁调整超参数组合尝试不同算法实现效果对比分析的需求场景特点,部署一套基于Web浏览器可视化的IDE解决方案显得尤为必要。这里推荐采用轻量化设计思路构建而成的开源产品JupyterLab满足此类诉求: ```bash pip3 install jupyterlab jupyter labextension install @jupyter-widgets/jupyterlab-manager nohup jupyter-lab --ip=0.0.0.0 --port=8888 & ``` #### 加载已有模型或从头开始训练新模型 当一切就绪后便可以直接加载本地磁盘中存在的预训练权重参数继续微调优化现有结构性能指标表现水平;当然也可以利用公开数据集自行编写代码片段定义全新的网络拓扑关系进而执行完整的end-to-end流程直至获得满意的结果为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值