XGBoost学习总结

XGBoost学习总结

  XGBoost是2014年提出的基于CART回归树的一种boosting集成算法,是对梯度提升决策树(GBDT)算法的一种改进实现.它的目标是建立t棵回归树使得树群对样本的预测值尽可能接近样本的真实值,并且具有一定的泛化能力.本文是对XGBoost学习的总结与思考,通过总结CART回归树构建与剪枝的思想方法与工作原理,并讨论了集成学习中主要的两种集成方法,即bagging和boosting.然后再分析GBDT的算法工作流程,在此基础上详细的推导了XGBoost算法目标函数的构建与优化过程.最后对比GBDT与XGBoost的区别与联系,加深对XGBoost的理解与掌握.

概述

  Extreme Gradient Boosting (XGBoost)是在梯度提升决策树(GBDT)基础上的改进,GBDT全称为Gradient Boosting Decision Tree.顾名思义,它是一种基于决策树(decision tree)实现的分类回归算法,即GBDT由两部分组成:梯度提升和决策树.Boosting作为一种模型组合方式,与梯度提升有很深的渊源,所以理解集成学习方法对掌握XGBoost是有必要的.分类回归树(CART) 是一棵二叉决策树,构成了XGBoost的基础弱学习器.所以在学习XGBoost算法前,需要了解CART的基本工作原理.

1 分类与回归树(CART)

  分类与回归树(Classification And Regression Tree, CART)模型是在给定输入随机变量 X X X条件下输出随机变量 Y Y Y的条件概率分布的学习方法.
  CART是典型的二叉决策树,根据其内部节点特征的取值将样本递归的分为两部分,将判断为“是”的样本点划分到左边,右边则是判断为“否”的样本点.
  这样便将特征空间划分成了有限的单元,并在这些单元上确定预测的概率分布.
  CART可以用于分类也可用于回归.若样本输出结果是离散值,比如晴天/阴天/雾/雨、用户性别、网页是否是垃圾页面,此时CART用于分类;若样本输出结果是连续型数据,比如明天的温度、用户的年龄、网页的相关程度,此时CART则用于回归预测.
回归到分类其实就是将确定值转换为概率值的过程。
  CART的生成就是递归地构造二叉决策树的过程,对回归树用平方误差最小化准则,对分类树使用基尼指数最小化准则,进行特征的选择来生成二叉树.

1.1 CART回归树生成算法

  在XGBoost模型中,所使用的基学习器即为CART回归树,故此小节详细阐述一下回归树的生成算法。假设有样本集 S = ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x N , y N ) S={(x_1,y_1 ),(x_2,y_2 ),…,(x_N,y_N )} S=(x1,y1)(x2,y2),,(xN,yN),一共有 N N N个样本, X X X为输入变量, Y Y Y为取值连续的输出变量。特征集 F = f 1 , f 2 , … , f M F={f_1,f_2,…,f_M } F=f1,f2,,fM,每一个样本都对应一组特征,现在考虑生成一颗回归树。
  (1) 现在有原始数据集 S S S,树的深度depth=0。
  (2) 特征选择,针对集合 S S S,遍历每一个特征 f e a t u r e feature feature,逐个取出其中所有的 v a l u e value value,每个 v a l u e value value都可看作一个切分点。选择第 f 0 f_0 f0个特征和它的取值 v v v,小于 v v v的样本点划分到左边集合 R 1 R_1 R1,将大于该值 v v v的样本点划分到右边集合 R 2 R_2 R2。不同特征 f e a t u r e feature feature及其对应的不同取值 v a l u e value value,就构成了许多切分方式。接着就需要知道该如何来选择最优的特征 f f f以及对应的切分点 v v v。最小化均方误差即可对固定的特征变量 f f f找到最优切分点 v v v.具体公式如下:
在这里插入图片描述
  (3) 找到最佳分割 f e a t u r e feature feature以及最佳分割 v a l u e value value之后,用该 v a l u e value value将集合 S S S分裂成2个集合:左集合 R 1 R_1 R1、右集合 R 2 R_2 R2,每一个集合也叫做一个节点。此时树的深度 d e p t h + = 1 depth += 1 depth+=1
  (4) 针对集合 R 1 R_1 R1 R 2 R_2 R2分别重复步骤2、3,直到达到终止条件。
终止条件:
  a. 节点中的样本个数小于预定阈值;
  b. 节点中的样本基本属于同一类。此时,样本已经被全部划分出来,节点停止分裂;
  c. 节点中已经不存在样本了。
  (5) 最后生成的、不再进行分裂的集合就叫做叶子节点。落在该叶子节点内的样本的预测值,就是该叶子节点的值。同一个叶子节点中的样本具有同一个预测值。
注意:这是GBDT的分裂方式,与XGBoost有所不同

1.2 CART剪枝算法

CART剪枝算法由两步组成:
  (1) 由生成算法产生的决策树 T 0 T_0 T0底端开始不断剪枝,直到 T 0 T_0 T0的根节点,形成一个子树序列 T 0 , T 1 , ⋯ , T n {T_0,T_1,⋯,T_n } T0,T1,,Tn
  (2) 通过交叉验证法在独立的验证数据集上对子树序列进行测试,从中选择最优子树。
  那么对于第一步,这个子树序列是怎么剪出来的?已经存在的决策树 T 0 T_0 T0开始剪枝,对 T 0 T_0 T0的任意内部节点 t t t,存在以 t t t为根节点的子树 T t T_t Tt。因为建模的时候,目标就是让损失函数达到最优,那剪枝的时候也用损失函数来评判。我们希望减少树的大小来防止过拟化,但又担心去掉一些节点后预测的误差会增大,那么如何达到这两个变量之间的平衡则是问题的关键,因此我们用一个变量 α α α来平衡,因此损失函数定义为如下:
              C α ( T ) = C ( T ) + α ( T ) C_α (T)=C(T)+α(T) Cα(T)=C(T)+α(T)
   T T T为任意子树, C ( T ) C(T) C(T)为预测误差,可以是平方误差也可以是基尼指数, ∣ T ∣ |T| T为子树 T T T的叶子节点个数,注意是叶子节点, α α α是参数, C ( T ) C(T) C(T)衡量训练数据的拟合程度, ∣ T ∣ |T| T衡量树的复杂度(即大小), α α α权衡拟合程度与树的复杂度。
  那么我们如何找到这个合适的 α α α来使拟合程度与复杂度之间达到最好的平衡呢,最好的办法就是,我们将 α α α 0 0 0取到正无穷,对于每一个固定的 α α α,我们都可以找到使得 C α ( T ) C_α (T) Cα(T)最小的最优子树 T ( α ) T(α) T(α) 。当 α α α 很小的时候, T 0 T_0 T0是这样的最优子树,当 α α α很大的时候,单独一个根节点是这样的最优的子树。
  尽管 α α α取值无限多,但是 T 0 T_0 T0 的子树是有限个,因此我们可以生成这样一个子树序列 :
           T 0 > T 1 > ⋯ > T n T_0>T_1>⋯>T_n T0>T1>>Tn
T n Tn Tn是最后剩下的那个根节点。.(这里的子树生成是根据前一个子树 T i T_i Ti,剪掉某一个内部节点,生成 T i + 1 T_{i+1} Ti+1 ,然后对这样的子树序列分别用测试集进行交叉验证,找到最优的那个子树作为我们的决策树。
  我们每次剪枝剪的都是某个内部节点的子节点,,也就是将某个内部节点的所有子节点回退到这个内部节点里,并将这个内部节点作为叶子节点.因此在计算整体的损失函数时,这个内部节点以外的值都没变,只有这个内部节点的局部损失函数改变了,因此我们本需要计算全局的损失函数,但现在只需要计算内部节点剪枝前和剪枝后的损失函数。对任意内部节点 t t t
  剪枝前的状态:有 ∣ T t ∣ |T_t | Tt个叶子节点,预测误差是 C ( T t ) C(T_t ) C(Tt)
  剪枝后的状态:只有本身一个叶子节点,预测误差是 C ( t ) C(t) C(t)。因此剪枝前的以t节点为根节点的子树的损失函数是:
       C α ( T t ) = C ( T t ) + α ∣ T t ∣ C_α (T_t )=C(T_t )+α|T_t | Cα(Tt)=C(Tt)+αTt
剪枝后的损失函数是:
         C α ( t ) = C ( t ) + α C_α (t)=C(t)+α Cα(t)=C(t)+α
  已知剪枝后的损失函数≤剪枝前的损失函数,则有: C α ( T t ) ≤ C α ( t ) C_α (T_t )≤C_α (t) Cα(Tt)Cα(t),这个值为:
           α ≥ ( C ( t ) − C ( T t ) ) / ( ∣ T t ∣ − 1 ) α≥(C(t)-C(T_t ))/(|T_t |-1) α(C(t)C(Tt))/(Tt1)
即当 α ∈ [ 0 , ( C ( t ) − C ( T t ) ) / ( ∣ T t ∣ − 1 ) ) α∈[0,(C(t)-C(T_t ))/(|T_t |-1)) α[0,(C(t)C(Tt))/(Tt1))时,不满足剪枝后的损失函数小于剪枝前的损失函数,不能进行剪枝;因此对于 T 0 T_0 T0,能够在t处剪枝的最小的 α α α为: α m i n = ( C ( t ) − C ( T t ) ) / ( ∣ T t ∣ − 1 ) α_{min}=(C(t)-C(T_t ))/(|T_t |-1) αmin=(C(t)C(Tt))/(Tt1)
  自下而上地对内部每个内部节点 t t t计算可以剪枝的最小 α m i n α_{min} αmin,取其中最小的 α m i n α_{min} αmin作为 α 1 α_1 α1( α α α序列逐渐增大,树序列T逐渐简单,最小的 α m i n α_{min} αmin保证没有遗漏可以剪枝的子树),对应的子树为 T 1 T_1 T1,剪切点为 t 1 t_1 t1;这样我们便得到了 α α α序列中的 α 1 α_1 α1以及对应的子树 T 1 T_1 T1。接着对子树 T 1 T_1 T1执行以上过程便可以得到 α 2 α_2 α2 T 2 T_2 T2,不停地重复以上过程便可以得到最优子树序列 T 0 , T 1 , ⋯ , T n {T_0,T_1,⋯,T_n} T0,T1,,Tn,且每一颗树都是上一颗树的子集(在上一颗的基础上进行剪枝)。获得了可以剪枝的最优子树序列 T 0 , T 1 , ⋯ , T n {T_0,T_1,⋯,T_n } T0,T1,,Tn之后,再将每棵树进行交叉验证,交叉验证结果最好的那颗子树便是最终的剪枝结果。

2 基于残差的训练方式

  已经知道Boosting是通过迭代多棵树来共同决策。这怎么实现呢?难道是每棵树独立训练一遍,当然不是。而是基于残差的训练方式。比如下图3所示6个样本,每个样本代表一个人,具有年龄、工作年限等特征,现在需要构造一个模型来预测每个样本的收入值。比如,对于第一个样本,使用已经训练好的学习器1,即一颗决策树。现在假如第一棵树对第一个样本的预测收入是9K,第二棵树预收入是0K,第三棵树预测收入是18K,我们就取平均值9K做最终结论?当然不是。且不说这是投票方法并不是GBDT,只要训练集不变,独立训练三次的三棵树必定完全相同,这样做完全没有意义。之前说过,GBDT是把所有树的结论累加起来做最终结论的,所以可以想到每棵树的结论并不是收入本身,而是收入的一个累加量。GBDT的核心就在于,每一棵树学的是之前所有树预测结果和的残差,这个残差就是一个加预测值后能得真实值的累加量。比如第一个样本的真实收入是10K,但第一棵树的预测收入是8K,差了2K,即残差为2K。那么在第二棵树里我们把第一个样本的收入设为2K去学习。如果第二棵树真的能把第一个样本分到2K的叶子节点,那累加两棵树的结论就是第一个样本的真实收入值;如果第二棵树的结论是1K,则第一个样本仍然存在1K的残差,第三棵树里的收入就变成1K,因此需要继续学习下去。
在这里插入图片描述
在这里插入图片描述

3 Extreme Gradient Boosting (XGBoost)

  XGBoost全名叫(Extreme Gradient Boosting)极端梯度提升,经常被用在一些比赛中,其效果显著。XGBoost 所应用的算法就是GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。XGBoost是一种加法模型,将模型上次预测(由t-1棵树组合而成的模型)值与真实值的残差作为参考进行下一棵树(第t棵树)的建立。以此,每加入一棵树,将其损失函数不断降低。
  下面将XGBoost算法的目标函数构建过程与优化方法分为四步,第一步为目标函数的构建,后面三步为目标函数的具体优化方法。

3.1 目标函数构建

  假设给定数据集D={( x i x_i xi, y i y_i yi)},XGBoost进行加法训练,学习 t t t棵树,采用以下函数对样本进行预测:
在这里插入图片描述
  这里 F F F表示所有可能的CART树, 𝑓 ( 𝑥 ) 𝑓(𝑥) f(x)是一棵回归树(CART),表示对样本进行的一次预测, y ^ i \hat{y}_i y^i则表示将1到 t t t棵树预测值进行求和。这里运用了加法策略,即将上一棵回归树预测的结果与真实值的残差作为下一棵决策树的模型输入值,那么下一棵树的训练结果与上一棵树的结果累加,使得预测值更加接近真实值。
对于加法策略具体描述如下:
  初始化(模型中没有树)时,其预测结果为0:在这里插入图片描述
  往模型中加入第一棵树:在这里插入图片描述
  往模型中加入第二棵树:在这里插入图片描述
  …
  往模型中加入第t棵树:在这里插入图片描述
  加法策略经过t次迭代后,模型的预测等于前 t − 1 t-1 t1次的模型预测加上第t棵树的预测,具体预测函数表达式如下:在这里插入图片描述
  那么,此时目标函数则可写作:
在这里插入图片描述
  公式 y i y_i yi y ^ i ( t − 1 ) \hat{y}_i^{(t-1)} y^i(t1)都已知,即 y i y_i yi为样本真实值, y ^ i ( t − 1 ) \hat{y}_i^{(t-1)} y^i(t1)为前面 t − 1 t-1 t1棵树预测得到的值,l则表示误差函数,误差函数可以是 s q u a r e − l o s s square-loss squareloss l o g − l o s s log-loss logloss等。 Ω ( f t ) Ω(f_t ) Ω(ft)则表示正则项,用来缓解模型过拟合的风险,正则项可以使用L1正则或L2正则等。根据公式可知,模型当前的任务就是学习第t棵树 f t ( x ) f_t (x) ft(x)来使得目标函数 L ( t ) L^{(t)} L(t)的值最小。

3.2 目标函数近似化处理

  XGBoost目标函数的优化使用了一阶和二阶偏导数,二阶导数有利于梯度下降的更快更准。使用泰勒展开取得函数做自变量的二阶导数形式,可以在没有选定损失函数具体形式的情况下,仅仅依靠输入数据的值就可以进行叶子节点分裂优化计算,本质上也就把损失函数的选取和模型算法优化/参数选择分开了。这种去耦合增加了XGBoost的适用性,使得它按需选取损失函数。
  二阶偏导信息本身就能让梯度收敛更快更准确。这一点在优化算法里的牛顿法里已经证实。可以简单认为一阶导指引梯度方向,二阶导指引梯度方向如何变化。这是从二阶导本身的性质,也就是为什么要用泰勒二阶展开的角度来说的。
  下面引入泰勒级数的具体展开公式:在这里插入图片描述
在这里插入图片描述
  根据泰勒公式展开式,可以将目标函数中在这里插入图片描述看作 𝑓(𝑥),那么在这里插入图片描述则可看作𝑓(𝑥+Δ𝑥),即在这里插入图片描述那么目标函数即可用泰勒级数进行近似化处理。将目标函数在y ̂_i^((t-1) )处进行二阶泰勒展开得到如下式子:
在这里插入图片描述
公式中,我们使用 g i g_i gi来表示误差函数在y ̂_i^((t-1) )处的一阶导数, h i h_i hi来表示误差函数在y ̂_i^((t-1) )处的二阶导数,即在这里插入图片描述
由于公式l(y_i,y ̂^((t-1) ) )表示的是前t-1棵树的预测值与真实值的残差,具体残差函数也已经明确,那么这一项即可看作常数项,因为参数项对具体目标函数的优化不起作用,故将公式中的常数项去掉,得到:
在这里插入图片描述

3.3 目标函数引入树的结构

目标函数经过近似化处理后,得到在这里插入图片描述,从在这里插入图片描述式中可以把在这里插入图片描述看作一个一元二次方程,对其求偏导就可以很容易的取到最值,但𝑓𝑡𝑥𝑖是一个函数,而我们的目标是寻找一个参数来最小化目标函数在这里插入图片描述。目标函数在函数空间中的表示方法:
在这里插入图片描述 参数空间中的目标函数表示如下:
在这里插入图片描述故需要将目标函数从函数空间转到参数空间,因此引入了函数 q ( x ) q(x) q(x),把f_{t}(𝑥)写成树结构的形式,即把树的结构引入到目标函数中:
在这里插入图片描述上式中 q ( x ) q(x) q(x)是一个映射,用来将样本映射成1到 T T T的某个值,也就是把它分到某个叶子节点, q ( x ) q(x) q(x)其实就代表了CART树的结构, w w w是叶子节点的分数(leaf score),所以 w q ( x ) w_q (x) wq(x)表示回归树对样本的预测值。
  对于正则项 Ω ( f k ) Ω(f_k ) Ω(fk),同样需要引入树的结构,对每棵回归树的复杂度进行惩罚,那么有哪些指标可以衡量树的复杂度?包括树的深度,内部节点个数,叶子节点个数 ( T ) (T) (T),叶节点分数 ( w ) (w) (w)等等。在XGBoost算法中采用的是叶子节点分数和叶节点个数,分别表示为 w w w T T T,正则项的具体表示如下:
在这里插入图片描述
  拥有了 f t f_t ft, Ω ( f t ) Ω(f_t ) Ω(ft)的树结构的表示形式,将其代入目标函数中得到:
在这里插入图片描述
  但是又出现了一个问题,在这里插入图片描述现在的表示形式前半部分是对样本个数进行累加,而后半部分是对叶子节点数进行累加,怎样对后续的优化造成了阻碍,那么需要将其统一起来。
  这里定义每个叶节点 j j j上的样本集合为I_j={├ i┤|q(x_i )=j},集合中每个值代表一个训练样本的序号,整个集合就是被第t棵CART树分到了第j个叶子节点上的所有样本。
在这里插入图片描述
  如果确定了树的结构(即 q ( x ) q(x) q(x)确定),为了使目标函数最小,可以令其导数为0,解得每个叶节点的最优预测分数为:
在这里插入图片描述
  代入目标函数,得到最小损失为:
在这里插入图片描述

3.4 贪心算法构建回归树

  当回归树的结构确定时,我们前面已经推导出其最优的叶节点分数以及对应的最小损失值,问题是怎么确定树的结构?贪心法,每次尝试分裂一个叶节点,计算分裂前后的增益,选择增益最大的。
  一个回归树形成的关键点:分裂点怎么选,分裂后的节点预测值是多少,分裂何时停止以及分裂前后的增益怎么计算。
L ̃^*式中的(G_j^2)/(H_j+λ)衡量了每个叶子节点对总体损失的贡献,我们希望损失越小越好,则该部分的值越大越好。因此,对一个叶子节点进行分裂,分裂前后的增益定义为:
在这里插入图片描述
  此处引入了γ,表示加入新叶子节点时增加的复杂度。
Gain的值越大,分裂后 L 减小越多。所以当对一个叶节点分割时,计算所有候选(feature, value)对应的Gain,选取gain最大的(feature, value)进行分裂。

xgboost是有放回抽样,这个怎么理解?

  xgboost属于boosting算法,boosting算法和bagging算法的一个区别不就是boosting算法训练集样本是不变的,而bagging是有放回抽样,基训练器之间是相互独立的,但是xgboost却有有放回抽样,这个怎么理解
在这里插入图片描述
xgboost之前有放回抽样是因为xgboost是一种提升树模型,而所用到的树模型则是CART回归树模型。

我们都知道树模型是天生过拟合的模型,并且如果数据量太过巨大,树模型的计算会非常缓慢,因此,我们要对我们的原始数据集进行有放回抽样(bootstrap)。

无论是装袋还是提升的集成算法中,有放回抽样都是我们防止过拟合。所以xgboost是有放回的抽样。

XGBoost的缺失值处理

XGBoost是一种boosting的集成学习模型
支持的弱学习器(即单个的学习器,也称基学习器)有树模型(gbtree/dart,dart为引入dropout的树模型,下次将详解)和线性模型(gblinear),默认为gbtree。

1、 如果弱学习器为gblinear,由于线性模型不支持缺失值,会将缺失值填充为0;

2、如果弱学习器为gbtree或dart,则支持缺失值,其分裂过程如下。

一、 训练阶段

在训练过程中,如果特征 f 0 f_0 f0出现了缺失值,处理步骤如下:
1、首先对于 f 0 f_0 f0非缺失的数据,计算出 L s p l i t L_{split} Lsplit并比较大小,选出最大的 L s p l i t L_{split} Lsplit,确定其为分裂节点(即选取某个特征的某个阈值);

2、然后对于 f 0 f_0 f0 缺失的数据,将缺失值分别划分到左子树和右子树,分别计算出左子树和右子树的 L s p l i t L_{split} Lsplit,选出更大的 L s p l i t L_{split} Lsplit,将该方向作为缺失值的分裂方向(记录下来,预测阶段将会使用)。 L s p l i t L_{split} Lsplit G a i n Gain Gain
在这里插入图片描述

二、预测阶段

在预测阶段,如果特征 f 0 f_0 f0出现了缺失值,则可以分为以下两种情况:

1、如果训练过程中 f 0 f_0 f0出现过缺失值,预测时则按照训练过程中缺失值划分的方向(left or right),进行划分;

2、如果训练过程中 f 0 f_0 f0没有出现过缺失值,预测时将缺失值的划分到默认方向(左子树)。

XGBoost与GBDT的联系和区别有哪些?

(1)GBDT是机器学习算法,XGBoost是该算法的工程实现。

(2)正则项:在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。

(3)导数信息:GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。

(4)基分类器:传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类器,比如线性分类器。

(5)子采样:传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机森林相似的策略,支持对数据进行采样。

(6)缺失值处理:传统GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺失值的处理策略。

(7)并行化:传统GBDT没有进行并行化设计,注意不是tree维度的并行,而是特征维度的并行。XGBoost预先将每个特征按特征值排好序,存储为块结构,分裂结点时可以采用多线程并行查找每个特征的最佳分割点,极大提升训练速度。

为什么XGBoost泰勒二阶展开后效果就比较好呢?

(1)从为什么会想到引入泰勒二阶的角度来说(可扩展性):XGBoost官网上有说,当目标函数是MSE时,展开是一阶项(残差)+二阶项的形式,而其它目标函数,如logistic loss的展开式就没有这样的形式。为了能有个统一的形式,所以采用泰勒展开来得到二阶项,这样就能把MSE推导的那套直接复用到其它自定义损失函数上。简短来说,就是为了统一损失函数求导的形式以支持自定义损失函数。至于为什么要在形式上与MSE统一?是因为MSE是最普遍且常用的损失函数,而且求导最容易,求导后的形式也十分简单。所以理论上只要损失函数形式与MSE统一了,那就只用推导MSE就好了。

(2)从二阶导本身的性质,也就是从为什么要用泰勒二阶展开的角度来说(精准性):二阶信息本身就能让梯度收敛更快更准确。这一点在优化算法里的牛顿法中已经证实。可以简单认为一阶导指引梯度方向,二阶导指引梯度方向如何变化。简单来说,相对于GBDT的一阶泰勒展开,XGBoost采用二阶泰勒展开,可以更为精准的逼近真实的损失函数。

XGBoost对缺失值是怎么处理的?

在普通的GBDT策略中,对于缺失值的方法是先手动对缺失值进行填充,然后当做有值的特征进行处理,但是这样人工填充不一定准确,而且没有什么理论依据。而XGBoost采取的策略是先不处理那些值缺失的样本,采用那些有值的样本搞出分裂点,在遍历每个有值特征的时候,尝试将缺失样本划入左子树和右子树,选择使损失最优的值作为分裂点。

XGBoost为什么可以并行训练?

(1)XGBoost的并行,并不是说每棵树可以并行训练,XGBoost本质上仍然采用boosting思想,每棵树训练前需要等前面的树训练完成才能开始训练。

(2)XGBoost的并行,指的是特征维度的并行:在训练之前,每个特征按特征值对样本进行预排序,并存储为Block结构,在后面查找特征分割点时可以重复使用,而且特征已经被存储为一个个block结构,那么在寻找每个特征的最佳分割点时,可以利用多线程对每个block并行计算。

参考文献

https://www.bilibili.com/video/BV1mZ4y1j7UJ?from=search&seid=14951923256840818281

https://www.cnblogs.com/zongfa/p/9324684.html

https://blog.csdn.net/huibeng7187/article/details/77588001

https://www.cnblogs.com/bnuvincent/p/9693190.html

https://www.cnblogs.com/ModifyRong/p/7744987.html

https://blog.csdn.net/lanyuelvyun/article/details/88697386

cart树怎么进行剪枝? - 椒盐砒霜叶小沐的回答 - 知乎
https://www.zhihu.com/question/22697086/answer/821565832

xgboost是有放回抽样,这个怎么理解?

还有人不懂XGBoost的缺失值处理?(全面解析篇)

深入理解XGBoost

XGBoost解读(1)–原理

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
随机森林(Random Forest)和XGBoost是广泛使用的机器学习算法,在分类和回归问题中都有很好的表现。这两种算法都是集成学习的一种形式,通过组合多个基本决策树来提高模型的准确性和鲁棒性。 以下是随机森林和XGBoost的对比实例: 假设我们有一组房屋的数据,包括房屋的面积、位置、年龄等信息,我们要根据这些信息来预测房屋的价格。我们将数据分成训练集和测试集,使用随机森林和XGBoost两种算法分别进行模型训练和测试。 随机森林的实现: 1. 从训练数据中随机选择一部分数据,并选择其中的一些特征进行决策树的构建; 2. 基于构建的多个决策树进行投票,将结果综合起来得出最终预测值; 3. 评估模型的准确性并进行调整,重复以上步骤直到模型表现满意为止。 XGBoost的实现: 1. 初始化模型,并将数据集分成训练集和测试集; 2. 针对每个样本,计算它的梯度和海森矩阵,并使用它们来训练一个决策树模型; 3. 对训练集和测试集进行预测,计算评价指标如RMSE; 4. 将每个预测结果的残差与实际标签进行加权,以便下一轮迭代模型更好的学习; 5. 重复以上步骤,直到模型表现满意为止。 在我们的实例中,使用随机森林算法和XGBoost算法进行训练和测试,最终评估准确度和性能时,发现XGBoost表现更好,其预测误差更小。 总结来说,随机森林和XGBoost都是常用的集成学习算法,它们在许多实际问题中都有良好的表现。具体使用哪种算法取决于实际问题的特点和需要解决的难度。面对不同的问题需求,我们需要结合实际情况灵活选用不同的算法。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值