计算机视觉 | 面试题:08、一般先对图像进行预处理,即图像归一化,为什么需要这么做呢?

图像归一化在深度学习中是必要的,原因包括:消除不同数据类型的差异(如uint8与double),加速梯度下降过程,确保不同参数拥有相似的梯度规模,实现数据中心化以提升模型泛化能力。归一化方法包括将像素值归一化到0-1或[-1, 1]之间,后者可以避免更新方向的限制,提高训练效率。" 18814589,1302517,UML活动图详解与应用,"['UML', '建模', '流程图', '系统行为', '并行处理']
摘要由CSDN通过智能技术生成

问题

在将图像输入到深度学习网络之前,一般先对图像进行预处理,即图像归一化,为什么需要这么做呢?

问题背景

在面试的时候,面试官先问的问题是“机器学习中为什么要做特征归一化”,我的回答是“特征归一化可以消除特征之间量纲不同的影响,不然分析出来的结果显然会倾向于数值差别比较大的特征,另外从梯度下降的角度理解,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解”。接着面试官又问“图像的像素值都是在0到255之间,并不存在量纲的差别,那为什么还需要做归一化呢?”是啊,为什么还要呢,被问住了……

拓展

既然是从机器学习特征归一化引出的图像的归一化问题,那么我们先讨论下“为什么要对数值型特征做归一化?”吧。

很多资料例如《百面机器学习》都是从梯度下降的角度来分析这个问题的,讨论地还不错的一篇是这个知乎的回答,已经写得比较清晰了,所以这里就不再整理了,直接点开链接看。

不过这个回答里面未归一化时的损失函数等高线图中椭圆的方向应该是横向的而不是纵向的,因为

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值