变异系数,通常缩写为CV ,是一种衡量数据集中值相对于平均值的分散程度的方法。计算如下:
CV = σ / μ
σ:数据集的标准差
μ:数据集的平均值
用简单的话来说,变异系数只是标准差与平均值之间的比率。
何时使用变异系数
变异系数通常用于比较两个不同数据集之间的变异。
在现实世界中,金融中经常使用它来比较投资的平均预期回报与投资的预期标准差。这使投资者可以比较投资之间的风险回报权衡。
例如,假设投资者正在考虑投资以下两只共同基金:
共同基金 A:平均值 = 9%,标准差 = 12.4%
共同基金 B:平均值 = 5%,标准差 = 8.2%
在计算每个基金的变异系数后,投资者发现:
共同基金 A 的 CV = 12.4% /9% = 1.38
共同基金 B 的 CV = 8.2% / 5% = 1.64
由于共同基金 A 的变异系数较低,因此相对于标准差,它提供了更好的平均回报。
示例 1:单个向量的变异系数
以下代码显示了如何计算单个向量的 CV:
#创建数据向量