Lasso回归是一种经典的特征选择方法,可以用于从众多特征中挑选出对目标变量具有重要贡献的关键特征。以下是用R语言实现Lasso回归提取关键特征的步骤:
- 导入数据
首先,需要导入数据集。这里以R自带的mtcars数据集为例,代码如下:
data(mtcars)
X <- as.matrix(mtcars[, 2:11]
Lasso回归是一种经典的特征选择方法,可以用于从众多特征中挑选出对目标变量具有重要贡献的关键特征。以下是用R语言实现Lasso回归提取关键特征的步骤:
首先,需要导入数据集。这里以R自带的mtcars数据集为例,代码如下:
data(mtcars)
X <- as.matrix(mtcars[, 2:11]