R语言Lasso回归提取关键特征

本文介绍了如何使用R语言的glmnet包实现Lasso回归,从数据集中选择关键特征。通过数据预处理、构建Lasso模型、提取非零系数特征及模型评估,展示了一套完整的Lasso回归应用流程。
摘要由CSDN通过智能技术生成

Lasso回归是一种经典的特征选择方法,可以用于从众多特征中挑选出对目标变量具有重要贡献的关键特征。以下是用R语言实现Lasso回归提取关键特征的步骤:

  1. 导入数据

首先,需要导入数据集。这里以R自带的mtcars数据集为例,代码如下:

data(mtcars)
X <- as.matrix(mtcars[, 2:11]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值