南 京 农 业 大 学 试 题 纸 附表(rape.csv)是25个油菜材料,测得每个材料的千粒重、亚油酸等的含量. (1) 对物质含量的八个指标作主成分分析,画出碎石图和主成分得分图; (2) 选

这是一份南京农业大学工程数学(实验)的试卷,涉及油菜材料的主成分分析和鸢尾花数据的统计分析。任务包括:(1)对油菜材料8个指标做主成分分析并绘制图表;(2)选择主成分作千粒重的线性回归;(3)从鸢尾花数据集中抽样并进行判别分析、系统聚类和k-means聚类,比较预测类别与实际类别的一致性。
摘要由CSDN通过智能技术生成

南 京 农 业 大 学 试 题 纸
2023-2024学年 1 学期 课程类型:必修 试卷类型:A
课程号 ME6003 课程名 工程数学(实验) 学分 2
学号 学院 专业 姓名

题号 一 二 总分 签名
得分
考试时间:60分钟.
试题分值:第一题10分,第2题30分,共40分
要求:对所给数据进行统计分析,要求写出R分析的步骤、主要输出结果,对主要输出结果进行解释.

  1. 附表(rape.csv)是25个油菜材料,测得每个材料的千粒重、亚油酸等的含量.
    (1) 对物质含量的八个指标作主成分分析,画出碎石图和主成分得分图;
    (2) 选取累积方差贡献超过80%主成分变量为解释变量,对千粒重作线性回归.

在这里插入图片描述

在这里插入图片描述

好的,我明白了。这是一个关于犯罪率的数据集,我们需要绘制四个子,要求这四个子均为不同形的叠加表示,并且以分栏的形式显示。我建议可以采用Python中的matplotlib库来完成这个任务。 首先,我们需要导入所需的库和数据集: ```python import pandas as pd import matplotlib.pyplot as plt crime_rates = pd.read_csv('crimeRatesByState2005.csv') ``` 接下来,我们可以开始绘制子。由于要绘制四个子,我们可以采用subplot函数来实现。具体代码如下: ```python # 第一个子 plt.subplot(2, 2, 1) plt.plot(crime_rates['murder'], 'r--') plt.plot(crime_rates['rape'], 'b--') plt.title('Murder and Rape Rates') # 第二个子 plt.subplot(2, 2, 2) plt.plot(crime_rates['aggravated_assault'], 'g') plt.title('Aggravated Assault Rates') # 第三个子 plt.subplot(2, 2, 3) plt.plot(crime_rates['burglary'], 'k') plt.title('Burglary Rates') # 第四个子 plt.subplot(2, 2, 4) plt.plot(crime_rates['motor_vehicle_theft'], 'm') plt.title('Motor Vehicle Theft Rates') plt.show() ``` 上述代码中,我们创建了四个子,分别展示了谋杀率(murder)、强奸率(rape)、严重伤害率(aggravated_assault)、入室盗窃率(burglary)和机动车盗窃率(motor_vehicle_theft)等五个犯罪指标的数据。其中第一个子使用了红色的虚线和蓝色的虚线来表示谋杀率和强奸率,第二个子使用了绿色的实线来表示严重伤害率,第三个子使用了黑色的实线来表示入室盗窃率,第四个子使用了品红色的实线来表示机动车盗窃率。 最后,我们需要调用show函数来显示形。运行上述代码后,会在屏幕上显示出四个子,它们均为不同形的叠加表示,并以分栏的形式显示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrrunsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值