AutoGPT

一、简介

是一个基于openAI研发的GPT4模型的一个开源应用程序,根据用户指定的目标,自动生成所需的提示,并且执行需要多个步骤才能完成的项目,整个过程不需要人类干预和指导(无监督学习),生成式预训练 Transformer模型

诞生原因

GPT4只能根据prompt来回答或者写作,如果我们只给一个模糊的提示,他就不知道该做什么了

于是诞生了autoGPT,能够自己给自己提示

根据设定好的目标和任务,自动的生成合适的提示,并且用gpt4了执行和回答这些提示,这样就能让gpt4来回答或者执行需要多个步骤来完成的任务,就不需要人类一直提示

本质

一个自主的AI代理,可以扫描互联网或者是执行用户计算机上能够执行的任何指令,然后将这个结果返回给GPT4从而判断这个结果是否正确以及接下来该做什么

二、使用流程

用户在终端输入自己的目标,描述任务名称和角色,指定最多5个要实现的目标,生成提示,执行多个步骤的任务

pinecome(向量数据库)

可以存储和检索大量的文章,帮助autoGPT记住之前做过什么以及想要做什么,将提示和结果都存储在数据库里面,并根据数据评估是否达到了这个任务的目标

三、问题拆分

1.autoGPT是如何理解人类指定的角色和目标?

零样本学习:GPT4根据一些描述或者定义学习到新的概念,再用这个概念生成新的内容

比如:你是一个科普作家,写一篇关于太空的文章(角色+目标)

AutoGPT就会学习到什么是科普作家,什么是太空,利用这些知识生成提示之后去写文章

2.AutoGPT怎么知道将人类设定的目标进行拆解成哪些子任务?

多任务学习:同时学习和执行多个任务,根据任务之间的关系来优化和协调他们

比如:写一篇关于太空的文章

AutoGPT就会将这个任务拆分成多个子任务,并且让GPT4同时学习和执行这些子任务

任务1:搜索和收集关于太空的资料

任务2:确定文章的主题和结构

任务3:生成标题和开头

任务4:生成内容和结尾

任务5:检查文章语法和逻辑

3.怎么生成提示的?

少量样本学习:让GPT4根据很少的一些例子,学习到一个新的任务或者技能,再去生成新的内容

4.怎么评估自己已经保证质量的完成了子任务?

元学习(meta learning):让GPT4根据自己的表现和结果(反馈评价)来学习和改进自己的学习以及他的执行方法

### 将 AutoGPT 与 ChatGLM 集成的方法 #### 设计理念 为了使AutoGPT与ChatGLM更好地协同工作,设计上应考虑两者的优势互补。AutoGPT具备强大的自主执行能力和任务规划能力,而ChatGLM则擅长自然语言处理和对话管理。因此,在集成过程中,应当让AutoGPT负责任务分解、计划制定以及外部API调用;与此同时,由ChatGLM承担起理解和回应用户输入的任务。 #### 技术架构概述 技术栈的选择对于成功实施这一方案至关重要。考虑到两个系统的特性差异较大,建议采用松耦合的方式连接二者——即通过RESTful API或其他轻量级消息传递机制来交换数据。这样不仅便于维护各自独立的功能模块,也利于后续扩展与其他服务对接的可能性[^1]。 #### 实现步骤详解 ##### 数据传输协议定义 首先需明确定义双方交流的数据格式,通常情况下JSON是一个不错的选择因为它易于解析且被广泛支持。具体来说,可以从以下几个方面入手: - 用户请求:当接收到前端传来的原始文本后,先交予ChatGLM做初步分析得到意图识别结果; - 动作指令集:基于上述解析成果,再由AutoGPT生成一系列具体的行动指南供后者参照执行; - 反馈报告:最后将操作后的状态变化反馈给聊天机器人以便及时告知使用者最新进展。 ##### 接口开发实例 下面给出一段Python代码片段用于展示如何创建这样一个桥梁类BridgeService: ```python import requests class BridgeService(object): def __init__(self, chatglm_endpoint, autogpt_endpoint): self.chatglm = chatglm_endpoint self.autogpt = autogpt_endpoint def process_user_input(self, user_message): response = requests.post( url=self.chatglm, json={"message": user_message} ) intent_data = response.json() action_plan = { "intent": intent_data['intent'], "parameters": intent_data.get('params', {}) } result = requests.post( url=self.autogpt, json=action_plan ).json() return f"Action completed with status {result['status']}" ``` 此段程序实现了接收来自用户的命令字符串,经过预训练的语言模型转换为结构化信息后再转发至自动化引擎中去实际运行相应动作的过程[^2]。 #### 应用场景举例说明 假设存在一个在线购物平台希望引入此类智能客服解决方案,则可以通过如下方式部署这套组合拳: - 客户咨询商品详情时,ChatGLM会迅速定位到顾客关心的商品属性并向其推送关联产品推荐列表; - 当访客表达购买意愿之后,后台随即激活AutoGPT接管订单处理流程直至交易顺利完成整个闭环体验优化升级[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值