(1)时序差分学习结合了动态规划与蒙特卡洛方法的思想
动态规划是这样迭代的,需要了解环境的dynamic才能求均值:
蒙特卡洛是这样增量式迭代的,只需要经验片段就可以:
而TD是这样迭代的:
(2)TD算法的V(S)的具体估计方法 :
直接用经验片段来估计。
最开始对每一个状态的价值V进行初始化(可以是随机初始化)。随后在环境中交互,每一次和环境交互得到的四元组
都可以用这个式子
来更新之前对当前状态的估计。
。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
如果大家喜欢这篇文章的话,希望大家收藏、转发、关注、评论、点赞,转载请注明出自这里。 PS:本随笔属个人学习小结,文中内容有参考互联网上的相关文章。如果您博文的链接被我引用,我承诺不会参杂经济利益;如果有版权纠纷,请私信留言。其中如果发现文中有不正确的认知或遗漏的地方请评论告知,谢谢! 还是那句话:不是我喜欢copy,是站在巨人的肩膀上~~