patchTST

文章探讨了PatchTST方法,它通过将时间序列分割成独立的patch,让Transformer以更高效的方式处理,减少了输入token数量,从而改进了时间序列预测性能。这种方法强调了通道独立性和Patching在Transformer编码器中的作用。
摘要由CSDN通过智能技术生成

一个链接写的挺好

PatchTST = Patch + Transformer

1.通道独立性

2.Patching

模型可以通过观察一组时间步骤而不是单个时间步骤来提取局部语义含义

大大减少了馈送到Transformer编码器的标记数量。在这里,每个patch都变成了输入到Transformer的一个token。这样,我们可以将token的数量从L减少到大约L/S 



Transformer时间序列:PatchTST引领时间序列预测进-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>