[阅读笔记] A micro Lie theory for state estimation in robotics

机器人状态估计的微李理论

Abstract

​ 介绍李理论的最基本原理,包含一些应用示例,提供了C++库。

1.Introduction

  • 流形:李群的光滑拓扑表面,其中状态表示发生变化。

  • 李群:

    • 拓扑学:涉及到流形的形状,并传达了与切空间和指数映射的关系的强大直觉。

在这里插入图片描述

  • 代数学:涉及到群操作及其具体实现,允许利用代数特性来发展封闭形式的公式或简化它们。

  • 几何学:将群元素与物体或参考坐标系的位置、速度、方向和/或其他变化联系起来。

  • 参考文献

    • Basic Lie theory(Abbaspour)
    • Very basic Lie theory(Howe)
    • Naive Lie theory(Stiilwell)
  • 开源库:https://github.com/artivis/manif

2.Micro lie theory

2.1 李群

​ 一个李群 G \mathcal{G} G是一个光滑流形,其元素满足群公理:

  • 封闭性: X ∘ Y ∈ G \mathcal{X \circ Y}\in\mathcal{G} XYG
  • 单位元: ε ∘ X = X ∘ ε = X \mathcal{\varepsilon \circ X} = \mathcal{X \circ \varepsilon} = \mathcal{X} εX=Xε=X
  • 逆元 : X − 1 ∘ X = X ∘ X − 1 = ε \mathcal{X^{-1} \circ X} = \mathcal{X \circ X^{-1}} = \mathcal{\varepsilon} X1X=XX1=ε
  • 结合律: ( X ∘ Y ) ∘ Z = X ∘ ( Y ∘ Z ) \mathcal{(X \circ Y)\circ Z} = \mathcal{X \circ (Y\circ Z)} (XY)Z=X(YZ)

​ 群 ( G , ∘ ) \mathcal{(G,\circ)} (G,)是一个集合, ∘ \circ 为组合运算。

李群的李代数:单位元处的切空间称之为李群的李代数。

Exs.1 单位复数群 S 1 S^1 S1

​ 复数乘法下的单位复数群 z = c o s θ + i s i n θ \mathrm{z=cos\theta}+\mathcal{i}\mathrm{sin\theta} z=cosθ+isinθ

在这里插入图片描述

​ 上图 T 1 S 1 T_1S^1 T1S1为李代数, T x S 1 T_xS^1 TxS1为任意切空间,群元素 z \mathrm{z} z的作用就是把 x \mathrm{x} x在平面内旋转 θ \theta θ

Exs.2 单位四元数群 S 3 S^3 S3

​ 四元数乘法下的单位四元数群 q = c o s ( θ / 2 ) + u s i n ( θ / 2 ) \mathrm{q=cos(\theta/2)}+\mathcal{u}\mathrm{sin(\theta/2)} q=cos(θ/2)+usin(θ/2)

在这里插入图片描述

​ 向量 x = i x + j y + k z \mathrm{x} = ix+ jy+kz x=ix+jy+kz通过双四元数乘积 x ′ = q x q ∗ \mathrm{x^{\prime}=qxq^{*}} x=qxq u u u旋转 θ \theta θ,其中 u u u是单位旋转轴。图中右侧两图过圆心垂直纸面向上的方向即为 u u u的方向。

​ 中间图说的是从单位元旋转到 q \mathrm{q} q,右边是从 p \mathrm{p} p开始。

​ 至于为什么四元数旋转格式为双四元数乘积,参见b站视频:【较难慎入】证明四元数三维旋转公式_哔哩哔哩_bilibili

2.2 群作用

​ 李群具有将其他集合的元素进行变换的能力,可以产生旋转、平移、缩放、组合。

​ 定义:给定李群 M \mathcal{M} M和集合 V \mathcal{V} V,用 X ⋅ v \mathcal{X \cdot v} Xv表示 X ∈ M \mathcal{X \in M} XM v ∈ V \mathcal{v \in V} vV上的作用,记作
⋅ : M × V → V ; ( X , v ) ↦ X ⋅ v \cdot :\mathcal{M \times V \to V};\mathcal{(X,v) \mapsto X \cdot v} :M×VV;(X,v)Xv
​ 这里的点乘可以理解为一种表示方式,例如,一个旋转矩阵群, S O ( n ) SO(n) SO(n) x x x为三维空间向量;其中 R R R数于群 S O ( n ) SO(n) SO(n) R ⋅ x R·x Rx的意思就是 R x Rx Rx,用旋转矩阵 R R R左乘 x x x,将其旋转为另一个姿态,即被称作群元素 R R R x x x的作用。
S O ( n ) : 旋转矩阵 R ⋅ x ≜ R x S E ( n ) : 欧几里得矩阵 H ⋅ x ≜ R x + t SO(n):旋转矩阵 \qquad R \cdot \mathrm{x} \triangleq R \mathrm{x} \\ SE(n):欧几里得矩阵 \qquad H \cdot \mathrm{x} \triangleq R \mathrm{x} +t SO(n):旋转矩阵RxRxSE(n):欧几里得矩阵HxRx+t

2.3 切空间和李代数

举例说明 X ( t ) \mathcal{X(t)} X(t)是流形 M \mathcal{M} M上的移动点,其速度 X ˙ = ∂ X ∂ t \mathcal{\dot X} = \frac {\partial{X}} {\partial{t}} X˙=tX属于在点 X \mathcal{X} X处切于 M \mathcal{M} M的空间,表示为 T X M T_\mathcal{X}\mathcal{M} TXM

​ 流形上每一个点的切空间都是唯一的,且是同构的。

  1. 李代数 m \mathfrak{m} m:单位元处的切空间, T X M T_\mathcal{X}\mathcal{M} TXM,即 M \mathcal{M} M​的李代数
    m ≜ T X M \mathfrak{m} \triangleq T_\mathcal{X}\mathcal{M} mTXM

    • 李代数 m \mathfrak{m} m是一个向量空间。
    • 指数映射, e x p : m → M \mathrm{exp} : \mathfrak{m} \to \mathcal{M} exp:mM,将李代数的元素转化为群的元素。
    • 伴随变换,将 X \mathcal{X} X处的切空间中的向量线性变换转化为单位元 ε \varepsilon ε处的切空间的向量。

在这里插入图片描述

​ 上图中点 z \mathrm{z} z以恒定角速率运动, z ( t ) = c o s ω t + i s i n ω t \mathbf{z}(t)=\mathrm{cos}\omega t +i\mathrm{sin}\omega t z(t)=cosωt+isinωt

​ 绿线处的切向量(速度) z ˙ = i ω \mathbf{\dot z}=i\omega z˙=,李代数 1 v ∧ = i ω ^{1}\mathbf{v^{\land}}=i\omega 1v=,上式对 ω \omega ω求导,取 t = 0 t=0 t=0

​ 红线处的切向量(速度) z ˙ = − ω s i n ω t + i ω c o s ω t = z ⋅ i ω \mathbf{\dot z}=-\omega\mathrm{sin}\omega t+i\omega\mathrm{cos}\omega t = \mathbf{z} \cdot i\omega z˙=ωsinωt+cosωt=z,李代数 z v ∧ = i ω ^{\mathbf{z}}\mathbf{v^{\land}}=i\omega zv=,同样是求导得到。

​ 注意到 z v ∧ = z − 1 z ˙ = z ∗ z ˙ ^{\mathbf{z}}\mathbf{v^{\land}}=\mathbf{z}^{-1} \dot {\mathbf{z}}=\mathbf{z}^{*} \dot{\mathbf{z}} zv=z1z˙=zz˙,其中 z ∗ = c o s ω t − i s i n ω t \mathbf{z}^{*}=\mathrm{cos}\omega t -i\mathrm{sin}\omega t z=cosωtisinωt z − 1 = c o s ( − ω t ) + i s i n ( − ω t ) = c o s ω t − i s i n ω t \mathbf{z}^{-1}=\mathrm{cos}(-\omega t) +i\mathrm{sin}(-\omega t)=\mathrm{cos}\omega t -i\mathrm{sin}\omega t z1=cos(ωt)+isin(ωt)=cosωtisinωt

李代数的元素形式 对于一个乘法群 X − 1 X = ε \mathcal{X}^{-1}\mathcal{X}=\varepsilon X1X=ε,有约束 X − 1 X ˙ + X ˙ − 1 X = 0 \mathcal{X}^{-1}\mathcal{\dot X}+\mathcal{\dot X}^{-1}\mathcal{X}=0 X1X˙+X˙1X=0,适用于在 X \mathcal{X} X处的切向量,因此,李代数的元素形式为
v ∧ = X − 1 X ˙ = − X ˙ − 1 X \mathbf{v}^{\land}=\mathcal{ X}^{-1}\mathcal{\dot X}=-\mathcal{\dot X}^{-1}\mathcal{X} v=X1X˙=X˙1X

  1. 笛卡尔空间向量 R m \mathbb{R}^{m} Rm

    李代数的元素可以表示为基元素 E i \mathbf{E}_i Ei的线性组合,互逆线性映射 h a t hat hat v e e vee vee实现了 m \mathfrak{m} m R m \mathbf{R}^{m} Rm之间的转换,
    H a t : R m → m ; τ ↦ τ ∧ = ∑ i = 1 m τ i E i V e e : m → R m ; τ ∧ ↦ ( τ ∧ ) ∨ = ∑ i = 1 m τ i e i \mathbf{Hat}:\mathbf{R}^{m} \to \mathfrak{m}; \quad \tau \mapsto \tau^{\land}=\sum_{i=1}^m\tau_iE_i \\ \mathbf{Vee}:\mathfrak{m} \to \mathbf{R}^{m}; \quad \tau^{\land} \mapsto (\tau^{\land})^{\lor}=\sum_{i=1}^m\tau_i\mathbf{e}_i \\ Hat:Rmm;ττ=i=1mτiEiVee:mRm;τ(τ)=i=1mτiei
    本文倾向于使用 R m \mathbb{R}^{m} Rm

Exs.3 旋转群 S O ( 3 ) SO(3) SO(3)、其李代数 s o ( 3 ) \mathfrak{so}(3) so(3)和向量空间 R 3 \mathbb{R}^{3} R3

​ 旋转矩阵 R \mathbf{R} R有约束(正交条件): R T R = I \mathbf{R}^{\mathrm{T}}\mathbf{R}=\mathbf{I} RTR=I,求时间导数可得切空间,
R T R ˙ + R ˙ T R = 0 R T R ˙ = − ( R T R ˙ ) T \mathbf{R}^{\mathrm{T}}\mathbf{\dot R}+\mathbf{\dot R}^{\mathrm{T}}\mathbf{R}=0 \\ \mathbf{R}^{\mathrm{T}}\mathbf{\dot R}=-(\mathbf{R}^{\mathrm{T}}\mathbf{\dot R})^{\mathrm{T}} RTR˙+R˙TR=0RTR˙=(RTR˙)T
​ 上面说明 R T R ˙ \mathbf{R}^{\mathrm{T}}\mathbf{\dot R} RTR˙是斜对称矩阵,记作 [ ω ] × [\omega]_{\times} [ω]×
[ ω ] × = [ 0 − ω z ω y ω z 0 − ω x − ω y ω x 0 ] = R T R ˙ [\omega]_{\times}=\begin{bmatrix} 0 & -\omega_z & \omega_y \\ \omega_z & 0 & -\omega_x \\ -\omega_y & \omega_x & 0 \end{bmatrix}=\mathbf{R}^{\mathrm{T}}\mathbf{\dot R} [ω]×= 0ωzωyωz0ωxωyωx0 =RTR˙
​ 当 R = I \mathbf{R}=\mathbf{I} R=I时, R ˙ = [ ω ] × \mathbf{\dot R}=[\omega]_{\times} R˙=[ω]×,说明 [ ω ] × [\omega]_{\times} [ω]×就是该旋转矩阵群的李代数,其自由度数为3。

​ 李代数的元素可以用基元素 E i \mathbf{E}_i Ei(也叫生成元)的线性组合来表示,映射为向量空间的基元素 e i \mathbf{e}_i ei,李代数和向量空间 R m \mathbf{R}^{m} Rm同构,两基元的转换由 H a t \mathrm{Hat} Hat V e e \mathrm{Vee} Vee操作完成

在这里插入图片描述

Exs.5 单位四元数群 S 3 S^{3} S3

​ 回顾例2,单位范数约束下, q ∗ q ˙ = 1 \mathbf{q}^{*}\mathbf{\dot q}=1 qq˙=1,对时间求导,
q ∗ q ˙ = − ( q ∗ q ˙ ) ∗ \mathbf{q}^{*}\mathbf{\dot q}=-(\mathbf{q}^{*}\mathbf{\dot q})^{*} qq˙=(qq˙)
q ∗ q ˙ \mathbf{q}^{*}\mathbf{\dot q} qq˙是纯四元数(实部为零),纯四元数取共轭求负之后还是自身。

​ 用 u v \mathbf{u}v uv来表示一个纯四元数,展开如下
u v = ( i u x + j u y + k u z ) v = i v x + j v y + k v z \mathbf{u}v=(iu_x+ju_y+ku_z)v=iv_x+jv_y+kv_z uv=(iux+juy+kuz)v=ivx+jvy+kvz
​ 其中 u \mathbf{u} u是单位纯四元数, v v v是范数,相当于对 u \mathbf{u} u长度拉伸得到一个纯四元数,将其带入上面的式子
q ˙ = q u v ∈ T q S 3 \mathbf{\dot q}=\mathbf{qu}v \in T_qS^{3} q˙=quvTqS3
​ 积分得到
q = q 0 e x p ( u v t ) \mathbf{q}=\mathbf{q}_0\mathrm{exp}(\mathbf{u}vt) q=q0exp(uvt)
​ 令 q 0 = 1 \mathbf{q}_0=1 q0=1,定义 ϕ ≜ u ϕ ≜ u v t \boldsymbol{\phi} \triangleq \mathbf{u}\phi \triangleq \mathbf{u}vt ϕuϕuvt,由于 u \mathbf{u} u的幂有规律 1 , u , − 1 , − u , 1 , . . . 1,\mathbf{u},-1,-\mathbf{u},1,... 1,u,1,u,1,...,有
q = e x p ( u ϕ ) ≜ ∑ ϕ k k ! u k q = e x p ( u ϕ ) = c o s ( ϕ ) + u s i n ( ϕ ) \mathbf{q}=\mathrm{exp}(\mathbf{u}\phi) \triangleq \sum {\frac{\phi^{k}} {k!}\mathbf{u}^{k}} \\ \mathbf{q}=\mathrm{exp}(\mathbf{u}\phi)=\mathrm{cos}(\phi)+\mathbf{u}\mathrm{sin}(\phi) q=exp(uϕ)k!ϕkukq=exp(uϕ)=cos(ϕ)+usin(ϕ)
​ 李代数元素 Φ ∈ s 3 \Phi \in \mathfrak{s}^{3} Φs3,可以通过 h a t hat hat v e e vee vee映射到 θ ∈ R 3 \boldsymbol{\theta} \in \mathbb{R}^{3} θR3
H a t : R 3 → s 3 θ ↦ θ ∧ = θ / 2 V e e : s 3 → R 3 ϕ ↦ ϕ ∨ = 2 ϕ \mathbf{Hat}: \mathbb{R}^{3} \to \mathfrak{s}^{3} \quad \boldsymbol{\theta} \mapsto \boldsymbol{\theta}^{\land}=\boldsymbol{\theta}/2 \\ \mathbf{Vee}: \mathfrak{s}^{3} \to \mathbb{R}^{3} \quad \boldsymbol{\phi} \mapsto \boldsymbol{\phi}^{\lor}=2\boldsymbol{\phi} Hat:R3s3θθ=θ/2Vee:s3R3ϕϕ=2ϕ
​ 2是为了计算旋转向量的因子,式中 θ ≜ u θ ≜ w t \boldsymbol{\theta} \triangleq \mathbf{u}\theta \triangleq \boldsymbol{w}t θuθwt是角-轴向量,根据 h a t hat hat v e e vee vee,四元数的指数形式为
q = E x p ( u θ ) = c o s ( θ / 2 ) + u s i n ( θ / 2 ) \mathbf{q}=\mathrm{Exp}(\mathbf{u}\theta)=\mathrm{cos}(\theta/2)+\mathbf{u}\mathrm{sin}(\theta/2) q=Exp(uθ)=cos(θ/2)+usin(θ/2)
​ 上式对应于例2,其指数形式同样可以参考b站视频。

2.4 指数映射

​ 指数映射是将李代数精确的转化为群中的元素,其逆映射为 l o g ( ) \mathrm{log}() log(),指数映射及其逆映射分为小写 和大写两种,一般将小写的直接称为指数映射
e x p : m → M ; τ ∧ ↦ X = e x p ( τ ∧ ) l o g : M → m ; X ↦ τ ∧ = l o g ( X ) E x p : R m → M ; τ ↦ X = E x p ( τ ) L o g : M → R m ; X ↦ τ = E x p ( X ) \mathrm{exp}: \mathfrak{m} \to \mathcal{M}; \quad \boldsymbol{\tau}^{\land} \mapsto \mathcal{X}=\mathrm{exp}(\boldsymbol{\tau}^{\land}) \\ \mathrm{log}: \mathcal{M} \to \mathfrak{m}; \quad \mathcal{X} \mapsto \boldsymbol{\tau}^{\land}=\mathrm{log}(\mathcal{X}) \\ \\ \mathrm{Exp}: \mathbb{R}^{m} \to \mathcal{M}; \quad \boldsymbol{\tau} \mapsto \mathcal{X}=\mathrm{Exp}(\boldsymbol{\tau}) \\ \mathrm{Log}: \mathcal{M} \to \mathbb{R}^{m}; \quad \mathcal{X} \mapsto \boldsymbol{\tau}=\mathrm{Exp}(\mathcal{X}) exp:mM;τX=exp(τ)log:Mm;Xτ=log(X)Exp:RmM;τX=Exp(τ)Log:MRm;Xτ=Exp(X)
指数映射的关键性质
e x p ( ( t + s ) τ ∧ ) = e x p ( t τ ∧ ) e x p ( s τ ∧ ) e x p ( t τ ∧ ) = e x p ( τ ∧ ) t e x p ( − τ ∧ ) = e x p ( τ ∧ ) − 1 e x p ( X τ ∧ X − 1 ) = X e x p ( τ ∧ ) − 1 X − 1 \mathrm{exp}((t+s)\boldsymbol{\tau}^{\land})=\mathrm{exp}(t\boldsymbol{\tau}^{\land})\mathrm{exp}(s\boldsymbol{\tau}^{\land}) \\ \mathrm{exp}(t\boldsymbol{\tau}^{\land})=\mathrm{exp}(\tau^{\land})^{t} \\ \mathrm{exp}(-\boldsymbol{\tau}^{\land})=\mathrm{exp}(\tau^{\land})^{-1} \\ \mathrm{exp}(\mathcal{X}\boldsymbol{\tau}^{\land}\mathcal{X}^{-1})=\mathcal{X}\mathrm{exp}(\tau^{\land})^{-1}\mathcal{X}^{-1} exp((t+s)τ)=exp(tτ)exp(sτ)exp(tτ)=exp(τ)texp(τ)=exp(τ)1exp(XτX1)=Xexp(τ)1X1

2.5 plus 和 minus 运算符

​ 允许引入流形元素之间的增量,并在其切向量空间中表示。符号: ⊕ \oplus ⊖ \ominus

​ 有左右两个版本:
r i g h t − ⊕ : Y = X ⊕ X τ ≜ X ∘ E x p ( X τ ) ∈ M r i g h t − ⊖ : X τ = Y ⊖ X ≜ L o g ( X − 1 ∘ Y ) ∈ T X M \mathrm{right-\oplus}: \quad \mathcal{Y}=\mathcal{X}\oplus {^{\mathcal{X}}\boldsymbol{\tau}} \triangleq \mathcal{X} \circ \mathrm{Exp}(^{\mathcal{X}}\boldsymbol{\tau}) \in \mathcal{M} \\ \mathrm{right-\ominus}: \quad {^{\mathcal{X}}\boldsymbol{\tau}}=\mathcal{Y}\ominus\mathcal{X} \triangleq \mathrm{Log}(\mathcal{X}^{-1} \circ \mathcal{Y}) \in \mathcal{T_{\mathcal{X}}M} right:Y=XXτXExp(Xτ)Mright:Xτ=YXLog(X1Y)TXM
l e f t − ⊕ : Y = ε τ ⊕ X ≜ E x p ( ε τ ) ∘ X ∈ M l e f t − ⊖ : ε τ = Y ⊖ X ≜ L o g ( Y ∘ X − 1 ) ∈ T X M \mathrm{left-\oplus}: \quad \mathcal{Y}={^{\varepsilon}\boldsymbol{\tau}}\oplus \mathcal{X} \triangleq \mathrm{Exp}(^{\varepsilon}\boldsymbol{\tau}) \circ \mathcal{X} \in \mathcal{M} \\ \mathrm{left-\ominus}: \quad {^{\varepsilon}\boldsymbol{\tau}}=\mathcal{Y}\ominus \mathcal{X} \triangleq \mathrm{Log}(\mathcal{Y} \circ \mathcal{X}^{-1}) \in \mathcal{T_{\mathcal{X}}M} left:Y=ετXExp(ετ)XMleft:ετ=YXLog(YX1)TXM
在这里插入图片描述

​ 本文默认采用右形式。

2.6伴随和伴随矩阵

​ 利用2.5中的右和左 − ⊕ -\oplus 操作,可以得到
E x p ( ε τ ) X = X E x p ( X τ ) \mathrm{Exp}(^{\varepsilon}\boldsymbol{\tau})\mathcal{X}=\mathcal{X}\mathrm{Exp}(^{\mathcal{X}}\boldsymbol{\tau}) Exp(ετ)X=XExp(Xτ)
​ 从小写和大写指数映射操作及指数映射性质可以知道
e x p ( ε τ ∧ ) = X e x p ( X τ ∧ ) X − 1 = e x p ( X X τ ∧ X − 1 ) \mathrm{exp}(^{\varepsilon}\boldsymbol{\tau}^{\land})=\mathcal{X}\mathrm{exp}(^{\mathcal{X}}\boldsymbol{\tau}^{\land})\mathcal{X}^{-1}=\mathrm{exp}(\mathcal{X}{^{\mathcal{X}}\boldsymbol{\tau}}^{\land}\mathcal{X}^{-1}) exp(ετ)=Xexp(Xτ)X1=exp(XXτX1)
​ 所以可以定义在 X \mathcal{X} X处的伴随
A d X : m → m ; τ ∧ ↦ A d X ( τ ∧ ) ≜ X τ ∧ X − 1 \mathrm{Ad}_{\mathcal{X}}:\mathfrak{m} \to \mathfrak{m}; \quad \boldsymbol{\tau}^{\land} \mapsto \mathrm{Ad}_{\mathcal{X}}(\boldsymbol{\tau}^{\land}) \triangleq \mathcal{X}\boldsymbol{\tau}^{\land}\mathcal{X}^{-1} AdX:mm;τAdX(τ)XτX1
作用是将点 X \mathcal{X} X转移到单位元 ε \varepsilon ε ε τ ∧ = A d X ( X τ ∧ ) ^{\varepsilon}\boldsymbol{\tau}^{\land}=\mathrm{Ad}_{\mathcal{X}}(^{\mathcal{X}}\boldsymbol{\tau}^{\land}) ετ=AdX(Xτ)

  • 伴随性质:

线性 : A d X ( a τ ∧ + b σ ∧ ) = a A d X ( τ ∧ ) + b A d X ( σ ∧ ) 同态映射 : A d X ( A d Y ( τ ∧ ) ) = A d X Y ( τ ∧ ) 线性:\quad \mathrm{Ad}_{\mathcal{X}}(a\boldsymbol{\tau}^{\land}+b\boldsymbol{\sigma}^{\land})=a\mathrm{Ad}_{\mathcal{X}}(\boldsymbol{\tau}^{\land})+b\mathrm{Ad}_{\mathcal{X}}(\boldsymbol{\sigma}^{\land}) \\ 同态映射: \quad \mathrm{Ad}_{\mathcal{X}}(\mathrm{Ad}_{\mathcal{Y}}(\boldsymbol{\tau}^{\land}))=\mathrm{Ad}_{\mathcal{XY}}(\boldsymbol{\tau}^{\land}) 线性:AdX(aτ+bσ)=aAdX(τ)+bAdX(σ)同态映射:AdX(AdY(τ))=AdXY(τ)

A d X ( ) \mathrm{Ad}_{\mathcal{X}}() AdX()是线性的,可以找到一个等效的矩阵算子 A d X \mathbf{Ad}_\mathcal{X} AdX,作用于笛卡尔向量空间,定义伴随矩阵
A d X : R m → R m ; X τ ↦ ε τ = A d X X τ A d X τ = ( X τ ∧ X − 1 ) ∨ \mathbf{Ad}_{\mathcal{X}}:\mathbb{R}^{m} \to \mathbb{R}^{m}; \quad {^{\mathcal{X}}\boldsymbol{\tau}} \mapsto ^\varepsilon\boldsymbol{\tau} = \mathbf{Ad}_{\mathcal{X}}{^{\mathcal{X}}\boldsymbol{\tau}} \\ \mathbf{Ad}_{\mathcal{X}}\boldsymbol{\tau}=(\mathcal{X}\boldsymbol{\tau}^{\land}\mathcal{X}^{-1})^{\lor} AdX:RmRm;Xτετ=AdXXτAdXτ=(XτX1)
作用是把任一点的切向量空间的向量线性变换为原点的切向量空间的向量

  • 伴随矩阵性质:

X ⊕ τ = ( A d X τ ) ⊕ X A d X − 1 = A d X − 1 A d X Y = A d X A d Y \mathcal{X}\oplus \tau=(\mathbf{Ad}_{\mathcal{X}}\boldsymbol{\tau})\oplus \mathcal{X} \\ \mathbf{Ad}_{\mathcal{X}^{-1}} = {\mathbf{Ad}_{\mathcal{X}}}^{-1} \\ \mathbf{Ad}_{\mathcal{XY}}=\mathbf{Ad}_{\mathcal{X}}\mathbf{Ad}_{\mathcal{Y}} Xτ=(AdXτ)XAdX1=AdX1AdXY=AdXAdY

2.7李群上的导数

  1. 向量空间上的雅可比矩阵

​ 多变量函数 f : R m → R n f:\mathbb{R}^{m}\to \mathbb{R}^{n} f:RmRn,雅可比矩阵为 n × m n \times m n×m
J = ∂ f ( x ) ∂ x ≜ [ ∂ f 1 ∂ x 1 ⋯ ∂ f 1 ∂ x m ⋮ ⋮ ∂ f n ∂ x 1 ⋯ ∂ f n ∂ x m ] ∈ R n × m \mathbf{J}=\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \triangleq \begin{bmatrix}\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_m} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_m} \end{bmatrix} \in\mathbb{R}^{n \times m} J=xf(x) x1f1x1fnxmf1xmfn Rn×m
​ 上式雅可比矩阵可以分块为列向量组成,这样每一列对应于,
j = ∂ f ( x ) ∂ x i ≜ lim ⁡ h → 0 f ( x + h e i ) − f ( x ) h ∈ R n \mathbf{j} = \frac{\partial f(\mathbf{x})}{\partial x_i} \triangleq \lim_{h \to 0} \frac{f(\mathbf{x}+h\mathbf{e}_i)-f(\mathbf{x})}{h} \in \mathbb{R}^{n} j=xif(x)h0limhf(x+hei)f(x)Rn
​ 分子可以表示为 v i ( h ) \mathbf{v}_i(h) vi(h),是 x \mathbf{x} x沿 e i \mathbf{e}_i ei方向扰动时, f ( x ) f(\mathbf{x}) f(x)的增量。

​ 紧凑形式为
J = ∂ f ( x ) ∂ x ≜ lim ⁡ h → 0 f ( x + h ) − f ( x ) h ∈ R n × m \mathbf{J}=\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \triangleq \lim_{\mathbf{h} \to 0} \frac{f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})}{\mathbf{h}} \in \mathbb{R}^{n \times m} J=xf(x)h0limhf(x+h)f(x)Rn×m

  1. 李群上的右雅可比矩阵

​ 使用 r i g h t − ⊕ , ⊖ \mathrm{right}-{\oplus},\ominus right,替代紧凑形式的 + , − +,- +,
X D f ( X ) D X ≜ lim ⁡ τ → 0 f ( X ⊕ τ ) ⊖ f ( X ) τ ∈ R n × m \frac{^{\mathcal{X}}Df(\mathcal{X})}{D\mathcal{X}} \triangleq \lim_{\boldsymbol{\tau} \to 0} \frac{f(\mathcal{X} \oplus \boldsymbol{\tau})\ominus f(\mathcal{X})}{\boldsymbol{\tau}} \in \mathbb{R}^{n \times m} DXXDf(X)τ0limτf(Xτ)f(X)Rn×m
在这里插入图片描述

​ 上式可按规则展开,同样的, e i \mathbf{e}_i ei方向扰动增量为 σ i ( h ) = f ( X ⊕ h e i ) ⊖ f ( X ) ∈ R n \mathbf{\sigma}_i(h)=f(\mathcal{X \oplus h\mathbf{e}_i})\ominus f(\mathcal{X}) \in \mathbb{R}^{n} σi(h)=f(Xhei)f(X)Rn,上图为流形上函数 f : M → N f: \mathcal{M} \to \mathcal{N} f:MN的右雅可比矩阵,映射局部切空间 T X M → T f ( X ) N {T_\mathcal{X}\mathcal{M}} \to {T_{f(\mathcal{X})}\mathcal{N}} TXMTf(X)N
\quad 例子参考, f : S O ( 3 ) → R 3 ; f ( R ) = R p , M = S O ( 3 ) , N = R 3 f:SO(3) \to \mathbb{R}^{3}; \quad f(\mathbf{R})=\mathbf{Rp},\mathcal{M}=SO(3),\mathcal{N}=\mathbb{R}^{3} f:SO(3)R3;f(R)=Rp,M=SO(3),N=R3
R D R p D R = − R [ p ] × ∈ R 3 × 3 \frac{^\mathbf{R}D\mathbf{Rp}}{D\mathbf{R}}=-\mathbf{R}[\mathbf{p}]_\times \in \mathbb{R}^{3 \times 3} DRRDRp=R[p]×R3×3

​ 对于小的 τ \boldsymbol{\tau} τ有线性近似
f ( X ⊕ X τ ) → X τ → 0 f ( X ) ⊕ X D f ( X ) D X X τ ∈ N f(\mathcal{X}\oplus {^{\mathcal{X}}\boldsymbol{\tau}}) \xrightarrow[{^{\mathcal{X}}\boldsymbol{\tau}} \to 0]{} f(\mathcal{X}) \oplus \frac{^{\mathcal{X}}Df(\mathcal{X})}{D\mathcal{X}}{^{\mathcal{X}}\boldsymbol{\tau}} \in \mathcal{N} f(XXτ) Xτ0f(X)DXXDf(X)XτN

  1. 李群上的左雅可比矩阵

​ 其导数是通过左操作来定义的,
ε D f ( X ) D X ≜ lim ⁡ τ → 0 f ( τ ⊕ X ) ⊖ f ( X ) τ ∈ R n × m \frac{^{\mathcal{\varepsilon}}Df(\mathcal{X})}{D\mathcal{X}} \triangleq \lim_{\boldsymbol{\tau} \to 0} \frac{f(\boldsymbol{\tau} \oplus \mathcal{X})\ominus f(\mathcal{X})}{\boldsymbol{\tau}} \in \mathbb{R}^{n \times m} DXεDf(X)τ0limτf(τX)f(X)Rn×m
​ 映射全局切空间 T ε M → T ε N T_\mathcal{\varepsilon}\mathcal{M} \to T_{\varepsilon}\mathcal{N} TεMTεN。这些切空间分别是 M \mathcal{M} M N \mathcal{N} N的李代数。

  1. 交叉右-左雅可比矩阵

​ 可以使用右加和左减定义雅可比矩阵,反之亦可。它们可以将局部切线映射到全局,或反之。

​ 通过伴随算子将它们和其他雅可比矩阵相关联。
ε D Y X D X = ε D Y ε D X A d X = A d Y Y D Y X D X Y D Y ε D X = Y D Y X D X A d X − 1 = A d Y − 1 ε D Y ε D X \frac {^{\varepsilon}D\mathcal{Y}}{^{\mathcal{X}}D\mathcal{X}}=\frac {^{\varepsilon}D\mathcal{Y}}{^{\varepsilon}D\mathcal{X}}\mathbf{Ad}_{\mathcal{X}}=\mathbf{Ad}_{\mathcal{Y}}\frac {^{\mathcal{Y}}D\mathcal{Y}}{^{\mathcal{X}}D\mathcal{X}} \\ \frac {^{\mathcal{Y}}D\mathcal{Y}}{^{\varepsilon}D\mathcal{X}}=\frac {^{\mathcal{Y}}D\mathcal{Y}}{^{\mathcal{X}}D\mathcal{X}}{\mathbf{Ad}_{\mathcal{X}}}^{-1}={\mathbf{Ad}_{\mathcal{Y}}}^{-1}\frac {^{\varepsilon}D\mathcal{Y}}{^{\varepsilon}D\mathcal{X}} XDXεDY=εDXεDYAdX=AdYXDXYDYεDXYDY=XDXYDYAdX1=AdY1εDXεDY
​ 式中, Y = f ( X ) \mathcal{Y}=f(\mathcal{X}) Y=f(X)

在这里插入图片描述

​ 左右雅可比矩阵可以通过 M \mathcal{M} M N \mathcal{N} N的伴随关系相关联,
ε D f ( X ) D X A d X = A d f ( X ) X D f ( X ) D X \frac {^{\varepsilon}Df(\mathcal{X})}{D\mathcal{X}}\mathbf{Ad}_{\mathcal{X}}=\mathbf{Ad}_{f(\mathcal{X})}\frac {^{\mathcal{X}}Df(\mathcal{X})}{D\mathcal{X}} DXεDf(X)AdX=Adf(X)DXXDf(X)

2.8流形中的不确定性,协方差传播

​ 使用右- ⊕ \oplus ⊖ \ominus 来定义流形中某点 X ˉ ∈ M \mathcal{\bar X} \in \mathcal{M} XˉM的切向量空间 T X ˉ M T_{\mathcal{\bar X}}\mathcal{M} TXˉM中的局部扰动 τ \boldsymbol{\tau} τ,
X = X ˉ ⊕ τ , τ = X ⊖ X ˉ ∈ T X ˉ M \mathcal{X}=\mathcal{\bar X} \oplus \boldsymbol{\tau}, \quad \boldsymbol{\tau}=\mathcal{X} \ominus \mathcal{\bar X} \in T_{\mathcal{\bar X}}\mathcal{M} X=Xˉτ,τ=XXˉTXˉM
在这里插入图片描述

​ 图中切点为 X ˉ \mathcal{\bar X} Xˉ,在微小扰动 τ \boldsymbol{\tau} τ下,偏移后的 X \mathcal{X} X的范围分别表示在流形和切空间中。

​ 在 X ˉ \mathcal{\bar{X}} Xˉ处的切向量空间定义协方差矩阵
∑ X ≜ E [ τ τ − 1 ] = E [ ( X ⊖ X ˉ ) ( X ⊖ X ˉ ) T ] ∈ R m × m {\scriptstyle\sum_{\mathcal{X}}} \triangleq \mathbb{E}[\boldsymbol{\tau}\boldsymbol{\tau}^{-1}]=\mathbb{E}[(\mathcal{X}\ominus\mathcal{\bar X})(\mathcal{X}\ominus\mathcal{\bar X})^{\mathrm{T}}] \in \mathbb{R}^{m \times m} XE[ττ1]=E[(XXˉ)(XXˉ)T]Rm×m
​ 局部扰动 τ \boldsymbol{\tau} τ的方向是任意的,所以 X \mathcal{X} X也是在范围内任意( m m m维有 m m m个随机变量), X ˉ \mathcal{\bar{X}} Xˉ可类比为该随机变量的期望。

​ 扰动也可以全局(左- ⊕ \oplus ⊖ \ominus )表示,就是原点切向量空间中 T ε M T_{\varepsilon}\mathcal{M} TεM
X = τ ⊕ X ˉ τ = X ⊖ X ˉ ∈ T ε M \mathcal{X}=\boldsymbol{\tau}\oplus\mathcal{\bar X} \quad \boldsymbol{\tau}=\mathcal{X}\ominus\mathcal{\bar X} \in T_{\varepsilon}\mathcal{M} X=τXˉτ=XXˉTεM
​ 局部和全局可以通过伴随关联在一起,
ε ∑ X = A d X X ∑ X A d X T ^{\varepsilon}{\scriptstyle\sum_{\mathcal{X}}}={\mathbf{Ad}_{\mathcal{X}}}{^{\mathcal{X}}{\scriptstyle\sum_{\mathcal{X}}}}{{\mathbf{Ad}_{\mathcal{X}}}}^{\mathrm{T}} εX=AdXXXAdXT
​ 函数 f : M → N ; X ↦ Y = f ( X ) f:\mathcal{M \to N };\mathcal{X \mapsto Y}=f(\mathcal{X}) f:MN;XY=f(X)的协方差传播使用雅可比矩阵的线性近似,
∑ Y ≈ D f D X ∑ X D f D X T ∈ R n × n {\scriptstyle\sum_{\mathcal{Y}}} \approx \frac{Df}{D\mathcal{X}}{\scriptstyle\sum_{\mathcal{X}}} {\frac{Df}{D\mathcal{X}}}^{\mathrm{T}} \in \mathbb{R}^{n \times n} YDXDfXDXDfTRn×n

2.9流形上的离散积分

​ 指数映射 X ( t ) = X 0 ∘ E x p ( v t ) \mathcal{X}(t)=\mathcal{X}_0 \circ \mathrm{Exp}(\mathbf{v}t) X(t)=X0Exp(vt)是连续积分,对于非恒定速度,可将其分段为恒定速度,每一段在流形的不同切空间中。定义 τ k = v k δ t k \boldsymbol{\tau}_{k}=\mathbf{v}_{k} \delta t_k τk=vkδtk,则
X k = X 0 ⊕ τ 1 ⊕ τ 2 ⊕ ⋯ ⊕ τ k \mathcal{X}_{k}=\mathcal{X}_{0} \oplus \boldsymbol{\tau}_{1} \oplus \boldsymbol{\tau}_{2} \oplus \cdots \oplus \boldsymbol{\tau}_{k} Xk=X0τ1τ2τk
​ 迭代形式为
X k = X k − 1 ⊕ τ k = X k − 1 ∘ E x p ( τ k ) \mathcal{X}_{k}=\mathcal{X}_{k-1} \oplus \boldsymbol{\tau}_{k}=\mathcal{X}_{k-1} \circ \mathrm{Exp}(\boldsymbol{\tau}_{k}) Xk=Xk1τk=Xk1Exp(τk)
在这里插入图片描述

​ 例子,将角速度 ω \omega ω积分成旋转矩阵或四元数,( m → M \mathfrak{m}\to \mathcal{M} mM),
R k = R k − 1 E x p ( ω k δ t ) q k = q k − 1 E x p ( ω k δ t ) \mathbf{R}_k=\mathbf{R}_{k-1}\mathrm{Exp}(\boldsymbol{\omega}_{k}\delta t) \\ \mathbf{q}_k=\mathbf{q}_{k-1}\mathrm{Exp}(\boldsymbol{\omega}_{k}\delta t) Rk=Rk1Exp(ωkδt)qk=qk1Exp(ωkδt)

3. Differentiation rules on manifolds

​ 这里开发的所有雅可比矩阵都是右雅可比矩阵。使用符号 J X Y ≜ D Y D X \mathbf{J}_{\mathcal{X}}^{\mathcal{Y}} \triangleq \frac{D\mathcal{Y}}{D\mathcal{X}} JXYDXDY,由伴随矩阵性质, A d X − 1 {\mathbf{Ad}_{\mathcal{X}}}^{-1} AdX1 A d X − 1 {\mathbf{Ad}_{\mathcal{X}^{-1}}} AdX1实现。

3.1链式法则

​ 对于 Y = f ( X ) \mathcal{Y}=f(\mathcal{X}) Y=f(X) Z = g ( Y ) \mathcal{Z}=g(\mathcal{Y}) Z=g(Y),有 Z = g ( f ( X ) ) \mathcal{Z}=g(f(\mathcal{X})) Z=g(f(X))。链式法则陈述如下,
D Z D X = D Z D Y D Y D X o r J X Z = J Y Z J X Y \frac{D\mathcal{Z}}{D\mathcal{X}}=\frac{D\mathcal{Z}}{D\mathcal{Y}}\frac{D\mathcal{Y}}{D\mathcal{X}} \quad or \quad \mathbf{J}_{\mathcal{X}}^{\mathcal{Z}}=\mathbf{J}_{\mathcal{Y}}^{\mathcal{Z}}\mathbf{J}_{\mathcal{X}}^{\mathcal{Y}} DXDZ=DYDZDXDYorJXZ=JYZJXY

3.2基本雅可比矩阵块

  1. 求逆

​ 用右雅可比矩阵的定义式 X D f ( X ) D X ≜ lim ⁡ τ → 0 f ( X ⊕ τ ) ⊖ f ( X ) τ \frac{^{\mathcal{X}}Df(\mathcal{X})}{D\mathcal{X}} \triangleq \lim_{\boldsymbol{\tau} \to 0} \frac{f(\mathcal{X} \oplus \boldsymbol{\tau})\ominus f(\mathcal{X})}{\boldsymbol{\tau}} DXXDf(X)τ0limτf(Xτ)f(X)进行定义,然后展开可知其为伴随的负,
J X X − 1 ≜ X D X − 1 D X ∈ R m × m J X X − 1 = − A d X \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}} \triangleq \frac{^{\mathcal{X}}D\mathcal{X}^{-1}}{D\mathcal{X}} \quad \in \mathbb{R}^{m \times m} \\ \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}}=-\mathbf{Ad}_{\mathcal{X}} JXX1DXXDX1Rm×mJXX1=AdX

  1. 复合

​ 定义同上,
J X X ∘ Y ≜ X D X ∘ Y D X ∈ R m × m J Y X ∘ Y ≜ Y D X ∘ Y D Y ∈ R m × m \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\circ \mathcal{Y}} \triangleq \frac{^{\mathcal{X}}D\mathcal{X}\circ \mathcal{Y}}{D\mathcal{X}} \quad \in \mathbb{R}^{m \times m} \\ \mathbf{J}_{\mathcal{Y}}^{\mathcal{X}\circ \mathcal{Y}} \triangleq \frac{^{\mathcal{Y}}D\mathcal{X}\circ \mathcal{Y}}{D\mathcal{Y}} \quad \in \mathbb{R}^{m \times m} JXXYDXXDXYRm×mJYXYDYYDXYRm×m
​ 展开并使用 e x p ( X τ ∧ X − 1 ) = X e x p ( τ ∧ ) − 1 X − 1 \mathrm{exp}(\mathcal{X}\boldsymbol{\tau}^{\land}\mathcal{X}^{-1})=\mathcal{X}\mathrm{exp}(\tau^{\land})^{-1}\mathcal{X}^{-1} exp(XτX1)=Xexp(τ)1X1 A d X τ = ( X τ ∧ X − 1 ) ∨ \mathbf{Ad}_{\mathcal{X}}\boldsymbol{\tau}=(\mathcal{X}\boldsymbol{\tau}^{\land}\mathcal{X}^{-1})^{\lor} AdXτ=(XτX1) A d X − 1 = A d X − 1 \mathbf{Ad}_{\mathcal{X}^{-1}} = {\mathbf{Ad}_{\mathcal{X}}}^{-1} AdX1=AdX1,得到
J X X ∘ Y = A d Y − 1 J Y X ∘ Y = I \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\circ \mathcal{Y}}={\mathbf{Ad}_{\mathcal{Y}}}^{-1} \\ \mathbf{J}_{\mathcal{Y}}^{\mathcal{X}\circ \mathcal{Y}}=\mathbf{I} JXXY=AdY1JYXY=I

  1. M \mathcal{M} M的雅可比矩阵

​ 将 M \mathcal{M} M的右雅可比矩阵定义为 X = E x p ( τ ) \mathcal{X}=\mathrm{Exp}(\boldsymbol{\tau}) X=Exp(τ)的右雅可比矩阵,对于 τ ∈ R m \boldsymbol{\tau} \in\mathbb{R}^{m} τRm
J r ( τ ) ≜ τ D E x p ( τ ) D τ ∈ R m × m \mathbf{J}_{r}(\boldsymbol{\tau}) \triangleq \frac{^{\boldsymbol{\tau}}D\mathrm{Exp(\boldsymbol{\tau})}}{D\boldsymbol{\tau}} \in \mathbb{R}^{m \times m} Jr(τ)DττDExp(τ)Rm×m
​ 左雅可比矩阵定义为
J l ( τ ) ≜ ε D E x p ( τ ) D τ ∈ R m × m \mathbf{J}_{l}(\boldsymbol{\tau}) \triangleq \frac{^{\boldsymbol{\varepsilon}}D\mathrm{Exp(\boldsymbol{\tau})}}{D\boldsymbol{\tau}} \in \mathbb{R}^{m \times m} Jl(τ)DτεDExp(τ)Rm×m
​ 用伴随相关联,
A d E x p ( τ ) = J l ( τ ) J r − 1 ( τ ) \mathbf{Ad}_{\mathrm{Exp(\boldsymbol{\tau})}}=\mathbf{J}_{l}(\boldsymbol{\tau}){\mathbf{J}_{r}}^{-1}(\boldsymbol{\tau}) AdExp(τ)=Jl(τ)Jr1(τ)
​ 根据链式法则
J r ( − τ ) = J l ( τ ) \mathbf{J}_{r}(\boldsymbol{-\tau})=\mathbf{J}_{l}(\boldsymbol{\tau}) Jr(τ)=Jl(τ)

  1. 群作用

​ 对于 X ∈ M ; v ∈ V \mathcal{X} \in \mathcal{M} ;v \in \mathcal{V} XM;vV,定义
J X X ⋅ v ≜ X D X ⋅ v D X J v X ⋅ v ≜ v D X ⋅ v D v \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\cdot v} \triangleq \frac{^{\mathcal{X}}D\mathcal{X}\cdot v}{D\mathcal{X}} \\ \mathbf{J}_{v}^{\mathcal{X}\cdot v} \triangleq \frac{^{v}D\mathcal{X}\cdot v}{Dv} JXXvDXXDXvJvXvDvvDXv

3.3额外推导

  1. L o g \mathrm{Log} Log映射:对于 τ = L o g ( X ) \boldsymbol{\tau}=\mathrm{Log}(\mathcal{X}) τ=Log(X),有 J X L o g ( X ) = J r − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathrm{Log}(\mathcal{X})}=\mathbf{J}_{r}^{-1}(\boldsymbol{\tau}) JXLog(X)=Jr1(τ)

  2. 加与减:
    J X X ⊕ τ = A d E x p ( τ ) − 1 J τ X ⊕ τ = J r ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathcal{X}\oplus \boldsymbol{\tau}}={\mathbf{Ad}_{\mathrm{Exp(\boldsymbol{\tau})}}}^{-1} \\ \mathbf{J}_{\boldsymbol{\tau}}^{\mathcal{X}\oplus \boldsymbol{\tau}}=\mathbf{J}_{r}(\boldsymbol{\tau}) JXXτ=AdExp(τ)1JτXτ=Jr(τ)

​ 给定 Z = X − 1 ∘ Y \mathcal{Z}=\mathcal{X}^{-1}\circ \mathcal{Y} Z=X1Y τ = Y ⊖ X = L o g ( Z ) \boldsymbol{\tau}=\mathcal{Y}\ominus\mathcal{X}=\mathrm{Log}(\mathcal{Z}) τ=YX=Log(Z)
J X Y ⊖ X = − J l − 1 ( τ ) J Y Y ⊖ X = J r − 1 ( τ ) \mathbf{J}_{\mathcal{X}}^{\mathcal{Y}\ominus\mathcal{X}}=-\mathbf{J}_{l}^{-1}(\boldsymbol{\tau}) \\ \mathbf{J}_{\mathcal{Y}}^{\mathcal{Y}\ominus\mathcal{X}}=\mathbf{J}_{r}^{-1}(\boldsymbol{\tau}) JXYX=Jl1(τ)JYYX=Jr1(τ)

4.Composite manifolds

概念

​ 一个复合流形是 M M M个不相关的流形的串联, M = ⟨ M 1 , ⋯   , M M ⟩ \mathcal{M}=\langle \mathcal{M}_1,\cdots,\mathcal{M}_M \rangle M=M1,,MM

​ 类似于单个流形:

单位元、逆元、组合
ε ⋄ ≜ [ ε 1 ⋮ ε M ] , X ⋄ ≜ [ X − 1 ⋮ X M − 1 ] , X ⋄ Y ≜ [ X ∘ Y 1 ⋮ X M ∘ Y M ] \varepsilon_{\diamond} \triangleq \begin{bmatrix}\varepsilon_{1} \\ \vdots \\ \varepsilon_{M}\end{bmatrix} , \mathcal{X}^{\diamond} \triangleq \begin{bmatrix}\mathcal{X}^{-1} \\ \vdots \\ \mathcal{X}_{M}^{-1}\end{bmatrix} , \mathcal{X}\diamond \mathcal{Y}\triangleq \begin{bmatrix}\mathcal{X}\circ \mathcal{Y}_1 \\ \vdots \\ \mathcal{X}_M\circ \mathcal{Y}_M\end{bmatrix} ε ε1εM ,X X1XM1 ,XY XY1XMYM
指数映射
E x p ⟨ τ ⟩ ≜ [ E x p ( τ 1 ) ⋮ E x p ( τ M ) ] , L o g ⟨ X ⟩ ≜ [ L o g ( X ) ⋮ L o g ( X M ) ] \mathrm{Exp}\langle\boldsymbol{\tau}\rangle \triangleq \begin{bmatrix}\mathrm{Exp}(\boldsymbol{\tau}_1) \\ \vdots \\ \mathrm{Exp}(\boldsymbol{\tau}_M)\end{bmatrix} , \mathrm{Log}\langle\mathcal{X}\rangle \triangleq \begin{bmatrix}\mathrm{Log}(\mathcal{X}) \\ \vdots \\ \mathrm{Log}(\mathcal{X}_M)\end{bmatrix} Expτ Exp(τ1)Exp(τM) ,LogX Log(X)Log(XM)
右加和减
X ( d i a m o n d p l u s ) X τ ≜ X ⋄ E x p ( τ ) Y ( d i a m o n d m i n u s ) X ≜ L o g ( X ⋄ ⋄ Y ) \mathcal{X} \mathrm{(diamondplus)} {^{\mathcal{X}}\boldsymbol{\tau}} \triangleq \mathcal{X} \diamond \mathrm{Exp}(\boldsymbol{\tau})\\ \mathcal{Y} \mathrm{(diamondminus)} \mathcal{X} \triangleq \mathrm{Log}(\mathcal{X}^{\diamond} \diamond \mathcal{Y}) X(diamondplus)XτXExp(τ)Y(diamondminus)XLog(XY)
这里的(diamondplus/minus)是 ⋄ \diamond 中间有加减符号,打不出来就用文字表示了。
右导数
D f ( X ) D X ≜ lim ⁡ τ → 0 f ( X ( d i a m o n d p l u s ) τ ) ( d i a m o n d m i n u s ) f ( X ) τ \frac{Df(\mathcal{X})}{D\mathcal{X}} \triangleq \lim_{\boldsymbol{\tau} \to 0} \frac{f(\boldsymbol{\mathcal{X} \mathrm{(diamondplus)} \tau})\mathrm{(diamondminus)} f(\mathcal{X})}{\boldsymbol{\tau}} DXDf(X)τ0limτf(X(diamondplus)τ)(diamondminus)f(X)
雅可比矩阵
D f ( X ) D X = [ D f 1 D X 1 ⋯ D f 1 D X M ⋮ ⋮ D f N D X 1 ⋯ D f N D X M ] \frac{D f(\mathcal{X})}{D \mathcal{X}} = \begin{bmatrix}\frac{D f_1}{D\mathcal{X}_1} & \cdots & \frac{D f_1}{D\mathcal{X}_M} \\ \vdots & & \vdots \\ \frac{D f_N}{D\mathcal{X}_1} & \cdots & \frac{D f_N}{D\mathcal{X}_M} \end{bmatrix} DXDf(X)= DX1Df1DX1DfNDXMDf1DXMDfN
​ 每一项用右雅可比矩阵定义式计算。对于较小的 τ \boldsymbol{\tau} τ有线性近似, f ( X ( d i a m o n d p l u s ) τ ) → τ → 0 f ( X ) ( d i a m o n d p l u s ) D f ( X ) D X τ ∈ N f(\mathcal{X}\mathrm{(diamondplus)} \boldsymbol{\tau}) \xrightarrow[\boldsymbol{\tau} \to 0]{} f(\mathcal{X}) \mathrm{(diamondplus)} \frac{Df(\mathcal{X})}{D\mathcal{X}}{\boldsymbol{\tau}} \in \mathcal{N} f(X(diamondplus)τ) τ0f(X)(diamondplus)DXDf(X)τN

协方差矩阵
∑ X ≜ E [ ( X ( d i a m o n d m i n u s ) X ˉ ) ( X ( d i a m o n d m i n u s ) X ˉ ) T ] ∈ R n × n {\scriptstyle\sum_{\mathcal{X}}} \triangleq \mathbb{E}[(\mathcal{X}\mathrm{(diamondminus)}\mathcal{\bar X})(\mathcal{X}\mathrm{(diamondminus)}\mathcal{\bar X})^{\mathrm{T}}] \in \mathbb{R}^{n \times n} XE[(X(diamondminus)Xˉ)(X(diamondminus)Xˉ)T]Rn×n

5.Landmark-based localization and mapping

​ 提供了三个应用示例

  • 用于基于地标定位的卡尔曼滤波器
  • 基于图的平滑方法,用于同时定位和建图
  • 增加了传感器自校正

引例

​ 机器人位于 S E ( 2 ) SE(2) SE(2)中,通过 u ∈ s e ( 2 ) \mathbf{u} \in \mathfrak{se}(2) use(2)控制纵向速度和角速度 v , ω v,\omega v,ω,没有横向分量
X = [ R t 0 1 ] ∈ S E ( 2 ) , b k = [ x k y k ] ∈ R 2 \mathcal{X}= \begin{bmatrix} \mathbf{R} &\mathbf{t} \\ \mathbf{0} & \mathbf{1}\end{bmatrix} \in SE(2), \quad \mathbf{b}_k=\begin{bmatrix} x_k \\ y_k \end{bmatrix} \in \mathbb{R}^{2} X=[R0t1]SE(2),bk=[xkyk]R2

u = [ u v u s u w ] = [ v δ t 0 ω δ t ] + w ∈ s e ( 2 ) W = [ σ v 2 δ t 0 0 0 σ s 2 δ t 0 0 0 σ ω 2 δ t ] ∈ R 3 × 3 \mathbf{u}=\begin{bmatrix} u_v \\ u_s \\ u_w \end{bmatrix} =\begin{bmatrix} v\delta t \\ 0 \\ \omega\delta t \end{bmatrix} + \mathbf{w} \quad\in\mathfrak{se}(2) \\ \mathbf{W}=\begin{bmatrix} \sigma_v^{2} \delta t & 0 & 0 \\ 0 & \sigma_s^{2} \delta t & 0 \\ 0 & 0 & \sigma_\omega^{2} \delta t\end{bmatrix} \quad\in\mathbb{R}^{3\times3} u= uvusuw = vδt0ωδt +wse(2)W= σv2δt000σs2δt000σω2δt R3×3

​ 其中的高斯噪声 w ∼ N ( 0 , W ) \mathbf{w} \sim \mathcal{N}(0,\mathbf{W}) wN(0,W)是可能的车轮横向打滑 u s u_s us b k \mathbf{b}_k bk为信标位置。

​ 位姿更新 X j = X i ⊕ u j ≜ X i E x p ( u j ) \mathcal{X}_j=\mathcal{X}_i\oplus \mathbf{u}_j \triangleq \mathcal{X}_i \mathrm{Exp}(\mathbf{u}_j) Xj=XiujXiExp(uj)

  1. 流形上使用误差状态卡尔曼滤波器进行定位

​ 待估计位姿$ \mathcal{\hat X}\in SE(2)$,估计误差,协方差,
δ x ≜ X ⊖ X ^ ∈ R 3 P ≜ E [ ( X ⊖ X ^ ) ( ( X ⊖ X ^ ) T ] ∈ R 3 × 3 \delta \mathbf{x} \triangleq \mathcal{ X}\ominus\mathcal{\hat X}\in \mathbb{R}^{3} \\ \mathbf{P}\triangleq \mathbb{E}[(\mathcal{X}\ominus\mathcal{\hat X})((\mathcal{X}\ominus\mathcal{\hat X})^{\mathrm{T}}] \in \mathbb{R}^{3\times3} δxXX^R3PE[(XX^)((XX^)T]R3×3
​ 每个机器人运动中使用ESKF预测,
X ^ j = X ^ i ⊕ u j P j = F P i F T + G W j G T \mathcal{\hat X}_j=\mathcal{\hat X}_i\oplus \mathbf{u}_j \\ \mathbf{P}_j=\mathbf{FP}_i\mathbf{F}^{\mathrm{T}}+\mathbf{GW}_j\mathbf{G}^{\mathrm{T}} X^j=X^iujPj=FPiFT+GWjGT
​ 其雅可比行列式
F ≜ J X i X j = J X ^ i X ^ j ⊕ u j = A d E x p ( u j ) − 1 G ≜ J u j X j = J u j X ^ i ⊕ u j = J r ( u j ) \mathbf{F}\triangleq \mathbf{J}_{\mathcal{X}_i}^{\mathcal{X}_j}=\mathbf{J}_{\mathcal{\hat X}_i}^{\mathcal{\hat X}_j\oplus\mathbf{u}_j}={\mathbf{Ad}_{\mathrm{Exp}(\mathbf{u}_j)}}^{-1} \\ \mathbf{G}\triangleq \mathbf{J}_{\mathbf{u}_j}^{\mathcal{X}_j}=\mathbf{J}_{\mathbf{u}_j}^{\mathcal{\hat X}_i\oplus\mathbf{u}_j}=\mathbf{J}_{r}(\mathbf{u}_j) FJXiXj=JX^iX^juj=AdExp(uj)1GJujXj=JujX^iuj=Jr(uj)
​ 在每次测量信标 y k \mathbf{y}_k yk时,用ESKF校正,其雅可比行列式
H ≜ J X X − 1 ⋅ b k = J X − 1 X − 1 ⋅ b k J X X − 1 = − [ I R T [ 1 ] × ( b k − t ) ] \mathbf{H} \triangleq \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}\cdot \mathbf{b}_k}=\mathbf{J}_{\mathcal{X}^{-1}}^{\mathcal{X}^{-1}\cdot \mathbf{b}_k} \mathbf{J}_{\mathcal{X}}^{\mathcal{X}^{-1}}=-\begin{bmatrix} \mathbf{I} & \mathbf{R}^{\mathrm{T}}[1]_{\times}(\mathbf{b}_k-\mathbf{t})\end{bmatrix} HJXX1bk=JX1X1bkJXX1=[IRT[1]×(bkt)]

  1. 使用基于图的优化进行平滑和映射

在这里插入图片描述

​ 目的:估计变量是信标位置和机器人轨迹

​ 假设轨迹由三个机器人姿态和三个信标组成复合状态,如上图
X = ⟨ X 1 , X 2 , X 3 , b 4 , b 5 , b 6 ⟩ , X i ∈ S E ( 2 ) , b k ∈ R 2 \mathcal{X}=\langle\mathcal{ X}_1,\mathcal{ X}_2,\mathcal{ X}_3,\mathbf{b}_4,\mathbf{b}_5,\mathbf{b}_6\rangle,\quad \mathcal{ X}_i \in SE(2),\mathbf{b}_k \in \mathbb{R}^{2} X=X1,X2,X3,b4,b5,b6,XiSE(2),bkR2
​ 从位姿 i i i j j j 的运动测量,从位姿 i i i 到信标 k k k 的测量对应于
u i j = X j ⊖ X i + w i j = L o g ( X i − 1 X j ) + w i j y i k = X i − 1 ⋅ b k + n i k \mathbf{u}_{ij}=\mathcal{X}_j \ominus \mathcal{X}_i + \mathbf{w}_{ij}=\mathrm{Log}(\mathcal{X}_i^{-1}\mathcal{X}_j)+\mathbf{w}_{ij} \\ \mathbf{y}_{ik}=\mathcal{X}_i^{-1} \cdot \mathbf{b}_k+\mathbf{n}_{ik} uij=XjXi+wij=Log(Xi1Xj)+wijyik=Xi1bk+nik
​ 上面对应黑实线,下面对应灰实线。

  1. 平滑与自标定的映射

​ 运动传感器受未知校准偏差 c = ( c v , c ω ) T \mathbf{c}=(c_v,c_{\omega})^{\mathrm{T}} c=(cv,cω)T的影响,控制输入和复合状态改变
u ~ = ( v δ t + c v , 0 , ω δ t + c ω ) T + w u = c ( u ~ , c ) ≜ [ u ~ v − c v u ~ s u ~ ω − c ω ] ∈ R 3 ≅ s e ( 2 ) X = ⟨ c , X 1 , X 2 , X 3 , b 4 , b 5 , b 6 ⟩ , X i ∈ S E ( 2 ) ; b k , c ∈ R 2 \widetilde{\mathbf{u}}=(v\delta t+c_v,0,\omega\delta t+c_{\omega})^{\mathrm{T}}+\mathbf{w} \\ \mathbf{u}=c(\widetilde{\mathbf{u}},\mathbf{c}) \triangleq \begin{bmatrix} \widetilde{{u}}_v-c_v \\ \widetilde{{u}}_s \\ \widetilde{{u}}_{\omega}-c_{\omega} \end{bmatrix} \in\mathbb{R}^3 \cong \mathfrak{se}(2) \\ \mathcal{X}=\langle\mathbf{c} ,\mathcal{ X}_1,\mathcal{ X}_2,\mathcal{ X}_3,\mathbf{b}_4,\mathbf{b}_5,\mathbf{b}_6\rangle,\quad \mathcal{ X}_i \in SE(2);\mathbf{b}_k,\mathbf{c} \in \mathbb{R}^{2} u =(vδt+cv,0,ωδt+cω)T+wu=c(u ,c) u vcvu su ωcω R3se(2)X=c,X1,X2,X3,b4,b5,b6,XiSE(2);bk,cR2
​ 导致运动残差改变,修改总雅可比矩阵。

​ 4. 3D场景下的实现

​ 定义变量在正确的空间中即可
X ∈ S E ( 3 ) u ∈ R 6 ≅ s e ( 3 ) b k , y ∈ R 3 \mathcal{X} \in SE(3) \\ \mathbf{u} \in \mathbb{R}^6 \cong \mathfrak{se}(3) \\ \mathbf{b}_k ,\mathbf{y} \in \mathbb{R}^3 XSE(3)uR6se(3)bk,yR3

6.Conclusion

  1. 选择尽可能避免抽象数学概念的材料。
  2. 选择了一种具有大量冗余的教学方法。
  3. 推广了便捷运算符的使用。
  4. 特别强调了雅可比行列式的定义、几何解释和计算。
  5. 在附录中介绍了机器人技术中最常见组 的广泛公式纲要。
  6. 提出了一些应用示例来说明李理论优雅而精确地解决机器人问题的能力。
### 回答1: 线性状态估计器(linear state estimators)在永磁同步电机(PMSM)系统的负载估计中起着重要的作用。 PMSM系统中的负载估计是指通过对电机的运行状态进行实时监测和估计来推测负载的情况。负载估计在许多应用中都是必需的,例如在工业自动化中,负载估计可以帮助控制电机的运行,实现精确的位置和速度控制。在智能交通领域,负载估计可以帮助计算车辆的载荷,从而改善能源利用和减少排放。 线性状态估计器是一种常用的估计算法,它使用系统的线性模型和测量数据来对系统的状态进行估计。对于PMSM系统,线性状态估计器可以通过测量电机的输入和输出电流、电压以及角速度等信息,利用系统的动力学模型对负载进行估计。 线性状态估计器通过将测量数据与系统的模型进行协调,可以实时地估计负载的情况。这种方法具有快速、准确的特点,通过优化算法可以进一步提高估计的精度。 总之,线性状态估计器在PMSM系统的负载估计中具有重要作用。它可以通过结合系统的动力学模型和测量数据,实时估计负载的情况。通过负载估计,可以实现对电机运行状态的精确监测和控制,从而提高系统的性能和效率。 ### 回答2: 线性状态估计器用于PMSM系统负载估计。PMSM系统是一种常用的电机控制系统,它广泛应用于各种工业和家用设备中。负载估计是在控制系统中非常重要的一项任务,它可用于优化电机的性能和提高电机控制的效率。线性状态估计器是一种常用的方法,可以通过测量和模型来估计系统的状态和负载。 在PMSM系统中,负载估计通常使用线性状态估计器来实现。该估计器基于数学模型和测量数据,通过使用卡尔曼滤波器或其他线性估计器来估计系统的状态和负载。这些估计器通常被设计为线性的,因为线性模型更容易处理和计算,而且在实际应用中具有良好的性能。 线性状态估计器的基本原理是通过将系统的状态和负载表示为状态向量和观测向量的线性组合来估计系统的状态和负载。状态向量代表系统的内部状态,比如电机的电流、速度和位置等。观测向量代表通过传感器测量到的物理量,比如电流、电压和转矩等。估计器使用状态和观测的线性关系,通过最小化估计误差来求解状态和负载的估计值。 线性状态估计器在PMSM系统的负载估计中具有广泛应用。它们可以提供准确和实时的负载估计,用于电机控制器的反馈和优化。通过估计负载,可以实现更精确的电机控制,提高系统的动态响应和能源利用效率。线性状态估计器还可以用于故障诊断和预测维护,提高系统的可靠性和可用性。 总之,线性状态估计器是一种有效的方法,用于PMSM系统中负载估计的实现。通过利用数学模型和测量数据,估计器可以准确地估计系统的状态和负载,并用于电机控制和优化。线性状态估计器在实际应用中表现出良好的性能和可靠性,对于提高PMSM系统的性能和效率具有重要意义。 ### 回答3: 线性状态估计器(linear state estimators)是一种用于永磁同步电机(PMSM)系统中负载估计的方法。 在PMSM系统中,负载估计是一项重要的任务,它可以帮助我们了解电机系统的负载状况,并对系统的运行性能进行优化。线性状态估计器是一种基于系统状态方程和测量数据的方法,它可以通过对电机系统进行建模和观测来估计负载。 线性状态估计器的设计基于线性系统理论,通过建立电机系统的状态方程和观测方程来描述系统的动态行为。状态方程描述了系统的演化规律,而观测方程描述了测量数据与系统状态之间的关系。 负载估计的目标是利用观测数据来推断未知的负载状态。线性状态估计器通过最小二乘估计等方法,将观测数据与状态方程进行融合,从而得到对负载状态的估计。 线性状态估计器的优势在于其简单性和计算效率。它可以通过线性系统的特性进行分析和设计,使得估计结果具有较高的准确性和鲁棒性。 总之,线性状态估计器是一种用于PMSM系统中负载估计的方法。通过建立状态方程和观测方程,利用观测数据对负载状态进行估计,可以帮助我们了解电机系统的负载状况,并对系统的运行性能进行优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值