Anchor-free Object Detector综述(不定时更新)

本文回顾了无锚点目标检测方法的发展,包括DenseBox、CornerNet、CenterNet等。这些方法摒弃了传统的锚框,直接预测目标的角点或中心点。CornerNet利用角点定位目标,而CenterNet则引入中心点信息以提高准确性。文章还探讨了如FCOS等其他无锚点方法,并分析了它们的优缺点,强调了速度与精度的平衡,其中Objects as Points因其简洁高效而受到关注。
摘要由CSDN通过智能技术生成

DenseBox (2015) (https://arxiv.org/abs/1509.04874)

densebox最早提出来是用来检测人脸的, 其有两个主要贡献, 第一是提出使用一个完整的FCN来预测box而不需要预先的proposal, 而且是end2end的训练过程; 第二是提出了用目标上已有的关键点信息来辅助box的定位.
在这里插入图片描述

为了节省训练时间, densebox没有直接把一整张图片都丢进去训练, 而是在目标周围裁剪出240240大小的patch丢进去训练, 最后输出6060*5的输出, 每个featuremap上的位置产生一个5d vector, 代表 (score, d x t d_{xt} dxt, d y t d_{yt} dyt, d x b d_{xb} dxb, d y b d_{yb} dyb), score就是该点的confidence, 0~1之间; ( d x t d_{xt} dxt

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值