使用conda在服务器上安装alphafold3

前提是数据库,权重文件等均已下载!具体教程请参考前面两篇文章

(其实就相当于是把dockerfile文件一步步手动安装)

1.创建AF3环境 

conda create -n alphafold3 python=3.11
conda activate alphafold3
conda install hmmer=3.4

可能遇到报错:PackagesNotFoundError: The following packages are not available from current channels

进入:Hmmer | Anaconda.org

conda install bioconda::hmmer

2.安装其他依赖:

可以分步,我这边都是直接去PYPI:pypi.org 手动下载每个.whl文件,自行安装。

pip install jmp==0.0.4 ml-dtypes==0.5.0 opt-einsum==3.4.0
pip install nvidia-cublas-cu12==12.6.3.3 nvidia-cuda-cupti-cu12==12.6.80 nvidia-cuda-nvcc-cu12==12.6.77 nvidia-cuda-runtime-cu12==12.6.77
pip install nvidia-cufft-cu12==11.3.0.4 nvidia-cusolver-cu12==11.7.1.2 nvidia-cusparse-cu12==12.5.4.2 nvidia-nccl-cu12==2.23.4 nvidia-nvjitlink-cu12==12.6.77
pip install rdkit==2024.3.5 scipy==1.14.1 tabulate==0.9.0 toolz==1.0.0  
pip install typeguard==2.13.3 typing-extensions==4.12.2 zstandard==0.23.0

可能会遇到.whl已经手动下载并上传至服务器但是报错:

python3.11 -m pip install *whl

3.安装所有依赖

pip3 install -r dev-requirements.txt
#下载太慢,换国内镜像源
pip install -r dev-requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

4.安装alphafold3

pip3 install --no-deps .

5.测试实例

python run_alphafold.py \    --json_path=~/alphafold3/input/fold_input.json \    --model_dir=~/alphafold3/models \    --output_dir=~/alphafold3/output

蛋白质、RNA、DNA按照官方示例进行定义即可~

### 关于YOLO #### YOLO系列发展及其特点 YOLO (You Only Look Once) 是一种实时目标检测算法,因其高效性和准确性而广受关注。最新的版本YOLOv8已经进一步优化了模型结构和训练流程,在多个应用场景中表现出卓越性能[^1]。 #### ASF-YOLO增强版特性 为了提高复杂场景下的识别效果以及多任务处理能力,ASF-YOLO引入了基于注意力机制的空间融合技术来改善特征提取过程中的信息交互效率,从而增强了YOLOv8对于不同尺度物体的捕捉能力和背景抑制力。 ```python import torch from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练模型 results = model.predict(source='data/images', save=True, show_labels=False) ``` --- ### AlphaFold简介 AlphaFold是由DeepMind开发的一款用于预测蛋白质三维结构的人工智能程序。它利用深度学习方法解决了生物学领域长期存在的难题——即如何从氨基酸序列准确推断出其对应的折叠形态。这一突破不仅有助于加速药物研发进程,也为理解生命科学提供了强有力的支持工具[^3]。 --- ### MobaXterm功能描述 MobaXterm是一款集成了多种网络协议客户端和支持图形界面操作的终端模拟器软件,特别适合远程管理和调试Linux服务器上的项目。通过创建自定义会话可以轻松连接到不同的主机,并且内置有文件传输、SSH隧道等功能模块方便用户日常使用[^4]。 ```bash ssh user@hostname # 使用 SSH 连接到远程主机 conda activate pytorch # 激活特定的工作环境以便运行 Python 脚本 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值