如果有用,感谢收藏、点赞、转发。
经过两天修改使用终于完成af3的安装以及样例测试。
!在clone之前可以看一下自己的编译版本比如:gxx_linux-64和gcc_linux-64 如果不行就利用conda更新
conda install gxx_linux-64 gxx_impl_linux-64 gcc_linux-64 gcc_impl_linux-64=13.2.0 -c conda-forge
可以参考链接: AlphaFold3 conda环境下部署
第一步:创建af3环境
先创建af的env环境,然后可以利用上述语句进行更新编译版本
#create conda env
conda create -n af python=3.11
conda activate af3
第二步:从git中clone alphafold3.git以及pip install相关
git clone https://github.com/google-deepmind/alphafold3.git
cd alphafold3
conda install -c bioconda hmmer
pip install -r dev-requirements.txt
pip install . --no-deps --verbose
可能会遇到的错误
当运行pip install . --no-deps --verbose 可能会遇到如下问题
解决方案(仅供参考):
conda install -c conda-forge gxx_linux-64 gcc_linux-64
安装完后再次运行
pip install . --no-deps --verbose #--verbose可要可不要
当运行pip install . --no-deps --verbose 可能会遇到no zlib.h问题
conda install -c conda-forge zlib
解决方案(仅供参考):
conda install -c conda-forge zlib
下载数据 解压缩后大概600+GB
文件夹可以自行创建‘datasets‘/或者data都可以
chmod +x fetch_af3_databases.sh
conda install -c conda-forge zstd
fetch_databases.sh [~/data]
[~/data] 存放数据的路径即可
## 修改权限-MSA修改权限
chmod -R 755 [~/data]
第三步:可以Alphafold_Sample样例测试
build_data
**申请得到af3的参数以后,可以在alphafold3文件下创建model文件夹并将其参数解压缩放入。
python run_alphafold.py --json_path=[filename.json] --model_dir=model/ --output_dir=[test/] --db_dir='datasets'/
解决方案(仅供参考):
conda install -c conda-forge zlib
出现如下问题:
解决方案(仅供参考):
需要更新12.4的cuda驱动具体操作过程查看以下链接
Linux离线状态下安装cuda、cudnn、cudatoolkit
最后再尝试一遍运行:成功!
后续再了解各个部分分别代表了什么
感谢以下网页公众号的支持:
- AlphaFold3 conda环境下部署
- Linux离线状态下安装cuda、cudnn、cudatoolkit
- 教程|使用conda安装AlphaFold3环境与使用
- AlphaFold3-issue
- Running AlphaFold3 At-Scale on High Performance Computing Clusters
- How to fix `GLIBCXX_3.4.30’ not found in Ubuntu 22.04
- jaxlib.xla_extension.XlaRuntimeError: INTERNAL: Failed to execute XLA Runtime executable: run time error: custom call ‘xla.gpu.custom_call’ failed
- 从git克隆文件会出现错误"Too many“
- 通过conda安装AlphaFold 3的经验与技巧
- 解决 ImportError: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21’ not found 的问题
- Error about libtpu.so and module ‘jaxlib.xla_extension’ #172
- alphafold3本地部署(manjaro等archlinux下游,不使用docker)