线性代数学习笔记之向量空间

1.  知识回顾


1. 定义:指具有大小和方向的量,称之为向量(物理学中称矢量)。 

备注:

①:与向量对应的量叫做数量(物理学中称标量),数量只有大小,没有方向。

②:几何向量的概念在线性代数中抽象化后,那么几何向量的概念不一定适用于抽象化后的向量。

2. 表达方式:

(1)代数表示:①:一般印刷体用黑体的小写英文字母来表示。

                           ②:一般手写体用小写英文字母ab或者大写英文字母AB,CD上加一箭头等表示。

(2)几何表示:可以用带有箭头的线段来表示。

备注:

①:箭头的方向代表向量的方向,线段的长度代表向量的大小。

②:当用有向线段表示向量时,起点可以任意选取,即:向量与有向线段的起点无关。

(3)坐标表示:

         ①:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底,

         则平面直角坐标系内的任意向量a可表示为a = xi+yj ,此时把实数对(x,y)叫做向量a的坐标,记作a = (x,y)。

备注:在平面直角坐标系中,以坐标原点O为起点P为终点作向量a,则点P的坐标为(x,y)。

         ②:在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量i,j,k作为一组基底。

         则空间直角坐标系内的任意向量a可表示为a = xi+yj+zk,此时把实数对(x,y,z)叫做向量a的坐标,记作a = (x,y,z)。

备注:在空间直角坐标系中,以坐标原点O为起点P为终点作向量a,则点P的坐标为(x,y,z)。

(4)矩阵表示:

         ①:在平面直角坐标系中,a = \begin{pmatrix} x\\ y \end{pmatrix}                          ②:在空间直角坐标系中,a = \begin{pmatrix} x\\ y\\ z \end{pmatrix}

3. 相关定义:

(1)向量的模:就是指向量的大小。

备注:已知向量a = (x,y),则向量a的模为:\left | a \right |=\sqrt{x^{2}+y^{2}}

(2)①:单位向量:就是指模为1的向量。                          ②:零向量:就是指模为0的向量。

备注:零向量的始点和终点重合,所以零向量的方向是任意的。

(3)相等向量:就是指长度相等且方向相同的向量。

备注:所有的零向量都相等。

4. 向量的运算:

  已知向量a=(x_{1},y_{1})b=(x_{2},y_{2})\lambda \in R,向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值