1. 知识回顾
1. 定义:指具有大小和方向的量,称之为向量(物理学中称矢量)。
备注:
①:与向量对应的量叫做数量(物理学中称标量),数量只有大小,没有方向。
②:几何向量的概念在线性代数中抽象化后,那么几何向量的概念不一定适用于抽象化后的向量。
2. 表达方式:
(1)代数表示:①:一般印刷体用黑体的小写英文字母来表示。
②:一般手写体用小写英文字母,
或者大写英文字母AB,CD上加一箭头等表示。
(2)几何表示:可以用带有箭头的线段来表示。
备注:
①:箭头的方向代表向量的方向,线段的长度代表向量的大小。
②:当用有向线段表示向量时,起点可以任意选取,即:向量与有向线段的起点无关。
(3)坐标表示:
①:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为一组基底,
则平面直角坐标系内的任意向量可表示为
,此时把实数对(x,y)叫做向量
的坐标,记作
= (x,y)。
备注:在平面直角坐标系中,以坐标原点O为起点P为终点作向量a,则点P的坐标为(x,y)。
②:在空间直角坐标系中,分别取与x轴、y轴,z轴方向相同的3个单位向量作为一组基底。
则空间直角坐标系内的任意向量可表示为
,此时把实数对(x,y,z)叫做向量
的坐标,记作
= (x,y,z)。
备注:在空间直角坐标系中,以坐标原点O为起点P为终点作向量a,则点P的坐标为(x,y,z)。
(4)矩阵表示:
①:在平面直角坐标系中, ②:在空间直角坐标系中,
3. 相关定义:
(1)向量的模:就是指向量的大小。
备注:已知向量
= (x,y),则向量
的模为:
。
(2)①:单位向量:就是指模为1的向量。 ②:零向量:就是指模为0的向量。
备注:零向量的始点和终点重合,所以零向量的方向是任意的。
(3)相等向量:就是指长度相等且方向相同的向量。
备注:所有的零向量都相等。
4. 向量的运算:
已知向量,
,
,向量