[JSOI2008] bzoj1013 球星空间产生器sphere - 高斯消元

40 篇文章 0 订阅
6 篇文章 0 订阅

用一点小学数学知识化简一下就是一个高斯消元。
代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#define N 20
#define gabs(x) (x>0?x:-x)
using namespace std;
double a[N][N],b[N],c[N];
int main()
{
    int n;scanf("%d",&n);
    for(int i=1;i<=n+1;i++)
        for(int j=1;j<=n;j++)
            scanf("%lf",&a[i][j]),
            c[i]+=a[i][j]*a[i][j];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            a[i][j]=2*(a[i+1][j]-a[i][j]);
    for(int i=1;i<=n;i++) b[i]=c[i+1]-c[i];
    for(int i=1;i<=n;i++)
    {
        int t=i;double x,y;
        for(int j=i;j<=n;j++)
            if(gabs(a[i][j])>gabs(a[t][j])) t=i;
        swap(a[i],a[t]),swap(b[i],b[t]),x=a[i][i];
        for(int j=i;j<=n;j++) a[i][j]/=x;b[i]/=x;
        for(int j=1;j<=n;j++)
            if(j^i)
            {
                y=a[j][i],b[j]-=y*b[i];
                for(int k=i;k<=n;k++)
                    a[j][k]-=y*a[i][k];
            }
    }
    for(int i=1;i<=n;i++)
        if(i<n) printf("%.3f ",b[i]);
        else printf("%.3f",b[i]);
    return 0;
}
根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值