图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes
,否则输出No
,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
题意:给你一个颜色方案,问是否可行。规则是相邻的颜色不能相同。
思路:一道简单的水题,走一遍图,判断即可。但是道理我们都懂,但为啥拿不到满分呢?这就是我整理这道题的的原因:审题。
仔细阅读这道题的题目和样例,你会发现不止是颜色>K,不符合,就连<K也是不符合的改完AC
下面给出AC代码:
#include <bits/stdc++.h>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
const int maxn=600+10;
int V,E,K,N;
bool cost[maxn][maxn];
bool used[maxn][maxn];
int a[maxn];
set<int> ans;
bool judge()
{
bool ok=true;
for(int i=1;i<=V;i++)
{
for(int j=i+1;j<=V;j++)
{
if(cost[i][j]==true&&a[j]==a[i])
{
ok=false;
break;
}
}
}
return ok;
}
int main()
{
memset(cost,false,sizeof(cost));
scanf("%d %d %d",&V,&E,&K);
for(int i=0;i<E;i++)
{
int v,u; scanf("%d %d",&v,&u);
cost[v][u]=cost[u][v]=true;
}
scanf("%d",&N);
for(int i=0;i<N;i++)
{
ans.clear();
memset(used,0,sizeof(used));
for(int j=1;j<=V;j++)
{
scanf("%d",&a[j]);
ans.insert(a[j]);
}
if(ans.size()==K&&judge()) printf("Yes\n");
else printf("No\n");
}
return 0;
}