MRAM可以替代NOR或SRAM

内存在人工智能解决方案(例如机器学习)的培训和实施中均扮演着关键角色。这也是创建诸如5G之类的高级网络技术的要求,这将需要在网络边缘以及在端点处进行处理和存储以实现IoT和其他应用程序。

如今大多数高性能内存都是易失性的,这意味着当设备断电时,存储在内存中的所有内容都会丢失。但是内存会消耗很多功率,尤其是DRAM,这需要定期且频繁地刷新内存中的数据。物联网等许多新应用程序要求将连接的传感器和其他设备放置在能量受限的情况下,依靠电池运行或使用能量收集。在数据中心中,诸如DRAM之类的存储器消耗了总功率的很大一部分。使用非易失性存储器可以保留许多数据,这将使许多应用受益,即使关闭电源也是如此。

对于包括人工智能推理在内的许多物联网应用,物联网系统并非始终处于完全活动状态,因此可以关闭系统的某些部分,直到需要时为止。使用非易失性存储器可以更轻松地在不需要时关闭这些存储器的电源。由于它们是非易失性的,因此可以更频繁地关闭它们,并且掉电和上电都需要更少的时间,从而改善了系统性能性能,同时将功耗降至最低。

除了在许多嵌入式和独立应用中对非易失性存储器的需求之外,一些新兴的非易失性存储器还可以扩展到比许多常规存储器更高的密度。例如,NOR闪存似乎被有效地限制为22nm或更大的光刻特征,平面NAND闪存被限制为15nm或更大的特征(这就是为什么大容量NAND正在转向3D结构的原因),当然还有sram, 5-6个晶体管占用了半导体芯片上的大量空间。 DRAM的密度缩放也受晶体管尺寸的限制。

由于这些原因,许多主要的半导体代工厂都提供MRAM作为嵌入式应用程序的非易失性存储器。 MRAM可以替代NOR或SRAM,以在设备上提供更高密度的非易失性存储器。用MRAM替换SRAM可以使AI推理引擎具有更多内存(并引导非易失性内存)以存储经过训练的模型。

### 不同类型内存技术的优缺点对比 #### 动态随机存取存储器 (DRAM) 动态随机存取存储器(DRAM)是一种易失性半导体存储器,在计算机系统中广泛用于主存储器。其优点在于成本低、密度高,适合大规模数据存储应用。然而,由于需要定期刷新电容器中的电荷来保持数据状态,功耗相对较高,并且读写速度较慢。 对于DRAM而言,另一个显著特点是制造工艺成熟,这使得它成为市场上最经济高效的解决方案之一[^1]。 ```python # Python伪代码展示如何访问DRAM def access_dram(address): data = read_from_memory(address) return data ``` #### 磁阻式随机存取存储器(MRAM) 磁阻式随机存取存储器(MRAM),利用电子自旋方向的不同表示二进制位0和1。这种非易失性的特性意味着即使断电后仍能保存信息。相比其他类型的RAM,MRAM具有更快的数据传输速率以及更低的能量消耗;但是目前它的生产规模较小,导致单位容量的价格偏高。 此外,随着技术进步,未来有望进一步提高集成度并降低成本,从而扩大市场份额[^3]。 #### 静态随机存取存储器(SRAM) 静态随机存取存储器(SRAM)由六个晶体管组成基本单元结构,不需要像DRAM那样频繁地刷新即可维持稳定的工作性能。因此,SRAM拥有极高的运行频率和支持更快速的操作响应时间。不过因为每比特所需元件数量较多,所以整体芯片面积较大,相应地提高了硬件开销。 尽管如此,考虑到高速缓存等特殊应用场景下的需求,SRAM依然是不可缺的选择。 ```c++ // C++伪代码展示如何操作SRAM寄存器 void write_sram_register(uint8_t reg_addr, uint32_t value){ *(volatile uint32_t*)(reg_base + reg_addr) = value; } ``` #### 可擦除可编程只读存储器(Flash Memory) 闪存作为一种非易失性存储介质,具备良好的性价比优势,适用于大量持久化文件系统的构建工作。它可以被多次编程与擦除,而且不存在机械运动部件,可靠性较好。不过需要注意的是,长期反复改写的扇区可能会引起物理损坏,进而影响使用寿命。 另外,相较于上述几种随机访问型内存在顺序读取方面表现优异,但在随机寻址效率上则有所欠缺[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值