认知未受损和患有抑郁症状的轻度认知障碍受试者的低功能网络完整性:一项多中心fMRI研究的结果

目录

1 引言

2 方法

3 结果

4 讨论

5 总结

6 数据可用性


简要总结:

这篇文章是一项多中心fMRI研究,探讨了老年人中认知未受损和轻度认知障碍(MCI)患者抑郁症状与大脑功能网络完整性的关系。研究发现,抑郁症状患者的全脑功能网络整合受损,表现为网络配置更倾向于路径状,导致功能整合能力下降,这可能是老年人抑郁症状的潜在原因。此外,研究还发现抑郁症状与前扣带回皮层和右杏仁核之间的功能连接减弱有关,这种连接受损与抑郁症状的严重程度相关。尽管MCI患者的海马体体积和楔前叶、内嗅皮层的厚度减少,但未发现抑郁症状与这些结构变化之间存在直接关联。这些结果表明,抑郁症状主要与大脑功能网络的改变有关,而与结构性脑萎缩关系不大。

摘要:

有证据表明,抑郁症状是网络功能障碍的结果,而不是病变病理的结果。研究使用最小生成树作为图论方法研究了全脑功能连接。此外,研究还检查了默认模式网络、前额叶边缘网络(FLN)、显著性网络和认知控制网络的功能连接。所有183名老年受试者都接受了全面的神经心理评估和3T脑部磁共振成像扫描。为了评估抑郁症状的潜在存在,研究使用了13项版本的贝克抑郁量表(BDI)或老年抑郁量表(GDS)。根据认知状态,参与者被分为三组:遗忘型轻度认知障碍(MCI)、非遗忘型MCI和健康对照组。在情感症状方面,受试者被分为抑郁组和非抑郁组。与非抑郁者相比,有抑郁症状的患者表现出平均离心率和网络直径的增加,这两项指标均与抑郁症状的严重程度相关。在有抑郁症状的患者中,发现前扣带回皮质(ACC)与右侧杏仁核在FLN中的功能连接减弱,这种损伤与抑郁症状的严重程度相关。尽管在有抑郁症状的受试者中未发现结构差异,但在MCI受试者中,尤其是遗忘型MCI患者,海马体积以及楔前叶和内嗅皮质的厚度均有所减少。离心率和直径的增加表明功能网络配置更倾向于路径状,可能导致抑郁中的功能整合受损,这可能是老年人抑郁症状学的可能原因。

1 引言

老年期抑郁症

抑郁症状和老年期抑郁常常损害老年人的生活质量。它会影响老年人的整体福祉,使他们难以参与日常活动并保持社交联系。老年期抑郁往往被低估和治疗不足。许多老年人可能不会寻求帮助,因为他们将抑郁症状归因于正常的衰老过程或其他身体疾病。根据以往的流行病学研究,老年期抑郁(LLD)在私人家庭中的发生率在0.9%到9.4%之间,而在机构中则在14%到42%之间。

此外,近50%的亚阈值或亚临床抑郁患者(不符合重度抑郁障碍[MDD]的标准,但表现出抑郁症状)在18个月内会发展为重度抑郁障碍。他们报告的功能障碍与MDD患者相似。抑郁症状对社会和经济有着重大影响。经历抑郁症状或重度抑郁的老年人死亡率更高,身体共病的患病率更高,生活质量更差。他们可能需要额外的支持服务,包括心理健康专家、护理人员和社区资源。抑郁与认知衰退之间的关联已经得到了充分证实,老年期抑郁提供了一个干预的机会,通过适当的识别、诊断和治疗,抑郁症状可以得到有效管理并缓解,尽管治疗抵抗现象较为普遍。早期干预可以防止抑郁症状恶化,减少残疾,增强认知功能,并改善老年人的整体健康结果。

轻度认知功能障碍与老年抑郁症状的功能网络连接

老年人的抑郁是一种病因复杂的疾病。有证据表明,其发病所涉及的因素与年轻时重度抑郁的病因因素有所不同,这需要单独讨论。抑郁与神经认知障碍的潜在关联突显了神经生物学因素在其发病机制中的重要作用。目前的证据表明,抑郁症状是网络功能障碍的结果,而不是病变病理的结果。将结构磁共振成像(MRI)和功能磁共振成像研究结合起来是研究神经网络功能障碍的合适方法。有文献证据表明,老年期抑郁(LLD)患者某些皮质区域的皮质厚度或特定皮下结构的体积与健康受试者不同。

此外,这些中心之间的解剖连接中断在结构或功能上与LLD有相关性。抑郁与认知衰退之间的关系似乎是双向的,因为抑郁是血管疾病和阿尔茨海默病的风险因素。同时,抑郁也可能是认知衰退的早期症状。因此,对轻度认知障碍(MCI)和抑郁症状在神经网络功能上的共同研究是一个热门的科学问题。尽管MCI是病变病理的结果,但越来越多的证据表明,抑郁症状是网络功能障碍的结果。基于以往研究老年抑郁与大脑连接之间关系的研究,四个神经网络在该疾病的病理生理学中可能发挥潜在作用:(1)情感/前额叶边缘网络(前扣带回皮质(ACC)、左、右杏仁核和伏隔核以及左、右眶额叶皮质(OFC)),(2)默认模式网络(后扣带回皮质(PCC)、内侧前额叶皮质(MPFC)、左、右角回),(3)显著性网络或腹侧注意网络(前扣带回皮质、左、右背外侧前额叶皮质(DLPFC)、左、右前岛叶、PCC),以及(4)认知控制网络(前扣带回皮质、左、右背外侧前额叶皮质(DLPFC)、左、右后顶叶皮质)。研究在前两个网络中使用PCC作为种子进行连接性计算,后两个网络中使用ACC。根据最近的一项荟萃分析,预计在有抑郁症状的患者中,这些网络会表现出功能连接减弱。在抑郁和认知衰退研究的功能网络之间似乎存在相当大的重叠。根据Eyler等人的荟萃分析,许多研究在MCI和阿尔茨海默病中发现了默认模式网络的损伤。尽管默认模式网络是MCI中最常被研究的功能网络,但研究结果存在许多不一致之处。Teipel等人的另一篇综述发现,在MCI和阿尔茨海默病中,静息态BOLD活动在默认模式网络和注意力网络之间的相关性降低。在抑郁症状学中,网络功能障碍似乎起着主要作用,而在MCI中,萎缩似乎更为关键。因此,研究还对颞叶和额叶结构(例如海马或眶额叶皮质)、楔前叶和白质高信号(WMH)进行了传统的结构分析,以共同研究MCI和抑郁症状的可能影响。白质高信号是T2加权MRI上信号强度增高的区域。以往的许多研究发现,有抑郁症状的老年受试者和血管性痴呆受试者中白质高信号的频率和严重程度增加。

图形理论分析

虽然以往对老年期抑郁(LLD)的研究中有几项考察了上述网络的连接性,但只有少数研究使用图论技术来考察全脑功能连接。研究人员使用图论分析来研究全脑功能连接的一般模式,这指的是大脑远隔区域之间的通信模式。在这些方法中,最小生成树(MST)方法因其稳健性以及能够提供公正的网络表示并克服阈值问题而受到关注。因此,MST特别适合比较来自不同受试者群体或具有不同密度的网络。早期的研究强调了图论指标对网络大小和密度的依赖性。这种依赖性在使用传统网络分析方法比较不同群体和条件时带来了挑战。通过采用MST计算,可以克服与网络密度和度数相关的这些偏差。MST通过包含最强的连接来创建一个无环的子网络,避免循环,并确保所有节点通过固定数量的边([节点数量] - 1)连接。基于MST的分析在以往对抑郁和认知衰退的研究中已成功应用。研究打算通过全局网络指标来考察全脑功能连接,正如分析所示:(A)通过平均离心率(平均路径长度)、网络直径来分析功能整合和分离;(B)通过最大介数中心性和叶分数来分析中心性;(C)通过度数离散度来分析网络弹性。

可以区分最小生成树(MST)的两种极端拓扑结构:路径状(或线状)和星状。在路径状拓扑中,除树的两端的两个节点外,所有节点都恰好连接到另外两个节点。这两个端点节点仅连接到一个其他节点,被称为树的叶子。这种类型的网络以低中心性和整合性为特征。在星状结构中,除一个中心节点外,所有其他节点都连接到该中心节点。这种极端情况的特征是网络分割度低和抗毁性差。在这两种形状之间,MST可以有各种配置(图1),例如健康人脑的结构和功能网络拓扑,其特征是网络整合度高、分割度高以及抗毁性强。因此,健康大脑通过结构良好的功能网络展现出最佳的信息处理系统,该网络具有模块化、层次化、平衡且成本效益高的组织结构。这种被称为具有丰富俱乐部的小世界拓扑结构的网络,确保了有效的通信。然而,各种神经科和精神科疾病与特定的连接中断和偏斜的网络结构有关。例如,在抑郁或痴呆等情况下,有证据表明大脑功能网络中分割与整合之间的平衡受到损害。度数离散度衡量度数分布的广泛程度,在具有高度中心节点的网络中显示出高值,并且与网络对攻击的抗毁性有关。

图片

图1展示了三种不同类型最小生成树(MST)的示意图

这些MST结构可以有所不同,从类似线性路径的树(表明网络内的整合程度最低)到类似星状的形状(表明网络内的整合程度最高)。在这些表示中,蓝色节点表示叶节点,即图的端点,而黄色节点表示中心节点。层次树设计结合了相对较小的直径和相对较低的最大介数中心性(BCmax)值。这种组合防止了信息在中心节点过度拥堵,使其成为高效网络运行的理想配置。图1参考自van Dellen等、van Lutterveld等和Fodor等的研究。

假设

根据以往的研究,神经退行和枢纽过载似乎会使网络向高度集中化、更像星状的拓扑结构转变,这种结构以牺牲分割度和抗毁性为代价,增加了整合度。因此,预计轻度认知障碍(MCI)患者会出现网络中心性受损,表现为介数中心性降低和叶分数增加。另一方面,抑郁会使网络拓扑结构变得更加像路径状,网络整合度降低。因此,预计与非抑郁个体相比,有抑郁症状的受试者在全脑功能网络中会出现网络整合受损,表现为离心率和直径增加。最后,预计抑郁患者和MCI患者会出现网络抗毁性受损,表现为度数离散度降低。想探索MCI和抑郁对网络拓扑结构的可能联合效应。换句话说,抑郁对MCI患者和健康对照组受试者功能网络配置的不同影响。在结构测量方面,假设与非抑郁和认知未受损的参与者相比,抑郁和MCI患者会有更高程度的神经萎缩和白质高信号(WMH)负担。

2 方法

道德声明:

这些实验完全遵循《赫尔辛基宣言》以及所有相关的国家和国际道德准则进行。匈牙利布达佩斯国家道德委员会批准了这项研究。所有程序均在获得参与者书面知情同意后进行。所有拒绝参与或不参与的潜在参与者不会因不参与研究而处于任何不利地位。

队列、受试者和程序

数据来自两个独立研究中心的183名受试者:(1)塞梅尔维斯轻度认知障碍神经影像学队列(SMNC)和(2)阿尔茨海默病流行病学队列观察库(ACOL)。数据的协调由欧洲指针联盟完成。参与者来自塞梅尔维斯大学精神病学和心理治疗系(SMNC数据库)和国家精神卫生、神经学和神经外科研究所(ACOL数据库)。所有参与者均为匈牙利人。更多人口统计学信息见表1。这是一项探索性研究。受试者数量由实证和可行性因素决定,未进行正式的统计样本量估计。

纳入标准为:(1)年龄≥55岁,(2/A)根据彼得森标准诊断为轻度认知障碍(见下文),(2/B)无认知缺陷(健康对照组)。排除标准为:(1)昏迷超过一小时,(2)中枢神经系统感染性疾病,(3)临床上显著的脑部病变(中风、严重的脑室周围白质病变、临床上显著的白质梗死),(4)酒精或其他物质使用或依赖,(5)智力障碍,(6)多发性硬化或其他脱髓鞘疾病,(7)脑积水,(8)未治疗的维生素B12缺乏,(9)未治疗的甲状腺功能减退,(10)梅毒或HIV感染,(11)在MMSE上得分≤24的重大神经认知障碍。

参与者接受了由神经心理学家、神经科医生或受过训练的神经科学家进行的全面神经和神经心理状况评估。还进行了血液检查、脑脊液(在一小部分受试者中)分析和磁共振成像扫描。神经心理评估工具包括匈牙利版的Rey听觉言语学习测试、匈牙利版的Addenbrooke认知检查(包括简明精神状态检查:MMSE)以及连线测试A和B。基于两个主要标准——神经认知状态和是否存在高于阈值的抑郁症状——共形成了六个研究组。

就认知状态而言,研究纳入了被分为三组的参与者:遗忘型轻度认知障碍(aMCI)、非遗忘型轻度认知障碍(naMCI)和健康对照(HC),均根据彼得森标准进行分类。这些标准包括:有主观记忆抱怨且得到知情者支持,能够维持日常活动,通过标准神经心理测试证明存在记忆障碍,总体认知功能正常,排除痴呆。然而,彼得森标准并未指定用于评估记忆障碍的神经心理测试。因此,研究使用了文献中最为常用的Rey听觉言语学习测试(RAVLT)。

为了区分遗忘型轻度认知障碍患者和健康对照者,采用低于人群均值1个标准差的截断值,该值根据年龄和性别进行了标准化。那些在延迟回忆分量表或总分中低于该截断值的人被归类为遗忘型轻度认知障碍患者。这些标准与国家老年病研究所-阿尔茨海默病协会工作组关于阿尔茨海默病诊断指南的建议一致。

对于未归入遗忘型轻度认知障碍组但在连线测试B或Addenbrooke认知检查中得分低于人群均值1个标准差(根据年龄、性别和教育程度标准化)的个体,他们被归入非遗忘型轻度认知障碍组。非遗忘型轻度认知障碍组的额外标准是在Addenbrooke认知检查中VLOM(言语流畅性+语言得分/定向+记忆得分)比率低于3.2,以排除潜在的遗忘型轻度认知障碍患者。

为了评估抑郁症状的存在和严重程度,使用了13项贝克抑郁量表(BDI)或老年抑郁量表(短版)(GDS)。抑郁症状的存在(即病例)被定义为BDI得分≥10和GDS得分≥5。将超过这些截断值的受试者称为“抑郁亚组”(遗忘型轻度认知障碍抑郁、非遗忘型轻度认知障碍抑郁、健康对照抑郁)。然而,需要指出的是,抑郁问卷得分并不一定表明存在重度抑郁。其诊断需要专家精神科检查或结构化临床访谈。因此,本手稿中描述为“抑郁亚组”的一部分受试者很可能患有亚临床抑郁。为了使抑郁评估在相关性分析中具有可比性,根据以下公式从两种抑郁测量方法中计算出z分数:z分数=(x−μ)/σ(x=个体测量值,μ=亚组均值,σ=亚组标准差)。

表1 人口统计学和神经心理学

图片

MRI检查

参与者接受了3特斯拉脑部磁共振成像(MRI)扫描,共使用了三种协议,因为SMNC包含两个队列。所有三种成像程序都允许获取高分辨率的解剖图像和功能性MRI数据,从而能够进行进一步的分析和研究。所有协议均包括T2加权、弥散加权和液体衰减反转恢复(FLAIR)加权序列,以识别可能的病理病变。在“静息态”功能性MRI扫描过程中,参与者被指示注视屏幕中央显示的十字。参与者明确被告知,如果在记录过程中睡着了,需要报告,但没有受试者报告这种情况。使用泡沫垫来最小化头部运动伪影。有关扫描仪和成像协议的更多详细信息,请参阅补充表1。有关使用CONN工具箱进行MRI预处理和使用Freesurfer进行MRI结构分析的详细描述,请参阅补充材料。

功能性磁共振成像(fMRI)连接性分析  

CONN工具箱提供了一系列默认预定义的感兴趣区(ROIs),研究用于连接性分析。这些ROI包括来自FSL哈佛-牛津图谱的91个皮质区域和15个皮下区域的完整大脑划分,以及来自AAL图谱的26个小脑区域,还包括一系列表征默认模式网络(DMN)、背侧注意网络和执行控制网络的枢纽区域。

研究计算了感兴趣区(ROI)之间的功能连接矩阵,该矩阵表示每对ROI之间的功能连接。连接矩阵中的每个元素被定义为一对ROI的BOLD时间序列之间的费舍尔变换双变量相关系数。具体的数学公式可参考相关资料(https://web.conn-toolbox.org/fmrimethods/connectivity-measures/roi-to-roi.)。

图论分析

通过最小生成树(MST)方法,功能连接矩阵被转化为图论表示。这种方法创建了一个简化的核⼼网络模型,捕捉了最强和最相关的连接。MST图反映了拓扑变化,并且之前已在研究中使用过。对于每位参与者,基于CONN工具箱获得的每对ROI之间的连接值生成的完整连接矩阵,生成了MST图。

树的直径是指网络中任意两个节点之间的最大边数。叶分数是指恰好有一个连接的节点数与树的总节点数的比值。度是指连接到节点的边数。节点的介数中心性(BC)是指连接两个节点的所有路径中经过选定节点的标准化比例,它表征了节点在网络中的“枢纽性”。节点的离心率表示在MST中到任意其他节点的最大距离。度数离散度(κ)衡量度分布的宽度,在具有高度枢纽的网络中显示出高值,与网络对攻击的抗毁性相关。在MST中,星状配置可以实现任意两个节点之间最短的平均路径长度(~平均离心率),从而实现最有效的通信。然而,在这种情况下,中心节点可能会轻易过载。

基于先前研究描述的测量方法,在MATLAB中计算了全局和特定节点的参数。分别计算了每个节点的度、介数中心性和离心率,并将度数离散度、最大BC和平均离心率作为MST的全局特征纳入统计分析。

结构性MRI分析

研究对特定结构的皮质厚度和皮下结构的体积进行了检查。选择这些结构是基于以往关于区分轻度认知障碍(MCI)与健康衰老的研究结果,以及总结老年期抑郁(LLD)可能的结构差异的论文。此外,研究还分析了功能网络主要枢纽的皮质厚度和体积。总共选择了以下十个结构进行体积分析或皮质厚度计算:(1)杏仁核,(2)海马,(3)伏隔核,(4)楔前叶,(5)内嗅皮质,(6)扣带回峡部,(7)海马旁回,(8)眶额叶皮质,(9)前扣带回,(10)梭状回。此外,还分析了(11)白质高信号(WMH负担)的总体积。白质高信号是通过在Freesurfer中测量T1加权图像上的白质低信号来评估的。根据Wei等人的研究,T2加权(T2 FLAIR)图像上的WMH和T1加权图像上的白质低信号高度相关(r > 0.8)。

统计分析,包括敏感性分析

采用一般线性模型分析(SAS中的PROC GLM)来检验抑郁和MCI及其交互作用对FLN、DMN、SN和CCN中连接强度的影响。为了研究抑郁症状对MCI患者和认知健康受试者网络功能的不同影响,所有一般线性模型分析中都包含了抑郁和MCI的交互作用。此外,分析中还包含了MRI扫描仪类型、性别、年龄、教育程度和总连接强度作为协变量。同样的模型被应用于分析网络指标和结构测量(例如皮质厚度和体积)的差异。研究按照van den Heuvel等人的建议,在连接强度分析中将总连接强度(即所有连接强度的数学总和)作为协变量,以克服网络分析中连接强度在受试者之间显著差异所引入的偏差。所有p值都通过Bonferroni方法校正多重比较,具体如下:(1)校正后的p = 0.05 /(网络中的枢纽数量 - 1)(FLN中的枢纽数量为7,DMN为4,SN为8,CCN为5);或(2)校正后的p = 0.05 / 网络参数(p = 0.05 / 5 = 0.01)。

在全部样本中,有22名受试者接受了抗抑郁(AD)治疗(抑郁亚组中有12人,非抑郁亚组中有10人)。为了证明这些药物不会影响研究的主要功能结果,研究进行了所有主要分析,包括这些受试者和不包括这些受试者,作为敏感性分析。

由于其中一个MCI亚组(aMCI/Dep,n = 12)的样本量较小,将MCI亚组合并,并将MCI作为二元变量(0 = 健康对照;1 = MCI)重复主要分析。

3 结果

人口统计学和抑郁症状

年龄和教育水平与抑郁症状严重程度没有相关性(p > 0.1)。统计趋势是,患有抑郁症的女性受试者多于男性;然而,这种差异并未达到显着性(29.6% vs 19.1%; ChiSquare = 2.4,p = 0.12)。

认知功能与抑郁症状严重程度的相关性

抑郁症状严重程度以z评分表示,与ACE总分呈负相关,与Trail Making A和B次数呈正相关(表2)。抑郁症状与RAVLT和SSE的相关性不显着(p > 0.1)。HC(25.3%)和MCB(aRCM和naRCM)(26.1%)组之间抑郁症状的发病率没有差异(卡方= 0.01,p = 0.91)。

网络参数

使用一般线性模型分析进行了一项研究,以探索抑郁和MCI及其交互作用如何影响网络指标。分析中包含了MRI扫描仪、性别、年龄、教育程度和总连接强度等协变量。通过最小生成树(MST)中的平均离心率(平均路径长度)和直径来评估功能整合。发现在表现出抑郁症状的患者中,平均离心率(图2A;F(1,182)=7.9,p=0.006;最小二乘均值(标准误):对照组=23.2(0.4),抑郁组=25.2(0.6))和直径(F(1,182)=6.9,p=0.009;最小二乘均值(标准误):对照组=30.3(0.5),抑郁组=32.8(0.8))都有所增加。MCI及其与抑郁的交互作用没有显著影响(p>0.1)。排除接受抗抑郁治疗的受试者后重复分析,结果没有改变。还通过合并两种MCI亚型,将MCI作为二元变量纳入分析(补充图1;平均离心率F(1,182)=8.5,p=0.004;直径F(1,182)=7.5,p=0.007)。

平均离心率(图2C;皮尔逊相关系数r=0.20,n=183,p=0.007;斯皮尔曼相关系数r=0.19,n=183,p=0.009)和直径(皮尔逊相关系数r=0.18,n=183,p=0.01;斯皮尔曼相关系数r=0.17,n=183,p=0.02)与通过GDI或BDI测量的抑郁严重程度(以z分数表示)呈正相关。排除接受抗抑郁治疗的受试者后重复相关性分析,结果没有改变。

在度数离散度方面,表现出抑郁症状的患者显示出网络抗毁性降低(F(1,182)=3.9,p=0.0498;最小二乘均值(标准误):对照组=1.12(0.007),抑郁组=1.09(0.011))。然而,在校正多重比较后,这种效应没有达到显著水平。MCI及其与抑郁的交互作用没有显著影响(p>0.1)。抑郁症状严重程度与度数离散度之间存在统计学趋势水平的负相关(皮尔逊相关系数r=-0.14,n=183,p=0.07;斯皮尔曼相关系数r=-0.14,n=183,p=0.07)。

以介数中心性和叶分数衡量的中心性在各组之间(抑郁组与非抑郁组或健康对照组与MCI组)没有差异,也没有与抑郁症状严重程度呈相关性(所有p值>0.1)。所有研究组中分析的网络参数均在补充表2中呈现。

表2 认知功能与抑郁症状严重程度之间的相关性

图片

情感/前边缘网络、默认模式网络、凸显网络和认知控制网 络中的功能连接性

采用一般线性模型分析来检验抑郁和MCI及其交互作用对DMN、SN、CCN和FLN中连接强度的影响。分析中包含了MRI扫描仪、性别、年龄、教育程度和总连接强度等协变量。

在前额叶边缘网络中,表现出抑郁症状的患者前扣带回与右侧杏仁核(图3;F(1,182)=8.9,p=0.003;最小二乘均值(标准误):对照组=0.07(0.02),抑郁组=-0.02(0.03))之间的连接强度减弱。通过合并两种MCI亚型,将MCI作为二元变量纳入分析(补充图2;F(1,182)=7.9,p=0.005;最小二乘均值(标准误):对照组=0.06(0.02),抑郁组=-0.03(0.03))。这种连接强度还与作为z分数的抑郁症状严重程度显著相关(皮尔逊相关系数r=-0.17,n=183,p=0.02;斯皮尔曼相关系数r=-0.15,n=183,p=0.049),但与杏仁核的体积或前扣带回的厚度无关(所有p值>0.1)。排除接受抗抑郁治疗的受试者后重复上述两项分析,结果没有改变。与认知未受损的对照组相比,MCI患者的前扣带回与左侧杏仁核的连接更强(F(1,182)=3.5,p=0.03;最小二乘均值(标准误):对照组=-0.03(0.03),MCI组=0.07(0.03))。然而,在校正多重比较后,这一结果没有达到显著水平。

在默认模式网络中,表现出抑郁症状的患者以PCC作为中心枢纽(种子)与左侧角回之间的连接降低(F(1,182)=5.1,p=0.02;最小二乘均值(标准误):对照组=0.65(0.02),抑郁组=0.55(0.04))。然而,在校正多重比较后,这一结果没有达到显著水平。在所有情况下,抑郁和MCI的交互作用均不显著。在显著性网络和认知控制网络中,抑郁、MCI及其交互作用对连接强度的影响均未达到显著水平(p>0.1)。

最小生成树中的网络枢纽

在描述性分析中,对抑郁和非抑郁受试者的最小生成树(MST)进行了平均(图2B)。将所有164个中枢神经系统结构按照其与其他节点的连接数(边)进行排序。在研究的网络中,两个主要枢纽——前扣带回(ACC)和后扣带回(PCC)——在两组受试者中均位于前25%百分位:在非抑郁受试者中,PCC排名第17(前10%百分位),ACC排名第35(前25%百分位),而在抑郁受试者中,PCC排名第31(前25%百分位),ACC排名第39(前25%百分位)。在分析的网络中,其他节点中,内侧前额叶皮质(MPFC)、左、右前岛叶和角回在两组中均位于前10%百分位。左、右背外侧前额叶皮质(DLPFC)位于前50%百分位,而额叶眶额皮质、杏仁核和伏隔核在两组中均位于后50%百分位。

图片

图2最小生成树网络中的平均偏离度和抑郁症状。

图片

图3额叶边缘网络的功能连接。

结构MRI分析

在楔前叶的厚度(F(2, 177)=7.7,p=0.0006;事后检验:对照组>非遗忘型轻度认知障碍(naMCI,p=0.018),对照组>遗忘型轻度认知障碍(aMCI,p=0.0006),naMCI=MCI(p=0.35)(图4))和海马的体积(F(2, 177)=6.6,p=0.0018;事后检验:对照组=naMCI(p=0.55),对照组>aMCI(p=0.001),naMCI>MCI(p=0.019)(图4))方面,轻度认知障碍患者与对照组之间存在显著差异,而内嗅皮质的厚度显示出统计学趋势水平的差异(F(2, 177)=5.6,p=0.0046;事后检验:对照组=naMCI(p=0.82),对照组>aMCI(p=0.004),naMCI>MCI(p=0.03))。在包括白质高信号(WMH)在内的任何结构的厚度或体积方面,表现出抑郁症状的受试者与非抑郁受试者之间没有统计学差异(p>0.05)。此外,轻度认知障碍(MCI)和抑郁的交互作用对体积或皮质厚度也没有显著影响(p>0.05)。所有研究组中分析的结构测量均在补充表2中呈现。

中枢神经系统结构与网络参数之间的可能关联通过皮尔逊相关性进行分析。上述结构中没有一个与平均离心率、直径、叶分数或介数中心性显著相关(p>0.05)。

图片

图4对照组和菊苣亚组之间的结构差异

4 讨论

这是首次在大量老年受试者中通过最小生成树(MST)研究轻度认知障碍和抑郁症状对功能脑网络拓扑结构的联合影响。发现在表现出抑郁症状的老年患者中,全脑网络整合受损,前额叶边缘网络的功能连接减弱。

在有抑郁症状的患者中,平均离心率和网络直径增加,这两项网络指标均与抑郁症状的严重程度相关。离心率和直径的增加表明功能网络配置更倾向于路径状。这种路径状的网络拓扑结构可能导致抑郁中的功能整合受损,这可能是老年人抑郁症状的潜在原因。以往的研究也发现了类似的全局连接性结果。受损认知(MCI组)和抑郁对网络参数的交互效应不显著,且在MCI患者和认知未受损受试者之间未发现全局网络测量的可比差异。此外,功能整合与认知表现之间没有相关性。而且,抑郁和非抑郁受试者之间的网络测量差异在认知未受损和MCI受试者中都有发现。因此,这一发现似乎是抑郁特有的,并且与老年人的认知无关。结构测量与功能连接和图论参数(例如平均离心率)之间缺乏相关性也支持这一观点。以往的脑电图(EEG)研究显示,在认知受损受试者中,以介数中心性增加和更像星状的配置为特征的中枢化程度增加,表明了更集中的拓扑结构,这与在抑郁情况下发现的过程相反。在本研究中没有发现MCI和认知未受损受试者之间有类似的差异。一个可能的解释是,当前研究中的受试者在认知上只有轻微的受损,可能不会表现出这些网络损伤。另一个可能的解释是,与功能性磁共振成像(fMRI)相比,脑电图连接性是检测MCI早期功能网络损伤的更敏感的指标。作为网络抗毁性的度数离散度在抑郁受试者中降低,并且与抑郁症状的严重程度在趋势水平上相关。这一结果与以往研究一致,这些研究显示抑郁受试者的大脑网络对故障的抗毁性较低。

在情感/前额叶边缘网络中,前扣带回与右侧杏仁核之间的功能连接减弱,这种损伤与抑郁症状的严重程度相关。情感/前额叶边缘网络包括相互连接的神经结构,如杏仁核、前扣带回、眶额叶皮质和伏隔核。该网络主要承担两个功能:情绪处理和动机行为的调节。此外,它在调节情绪和心境与内脏功能之间的联系中起着关键作用。许多研究表明,情感/前额叶边缘网络功能障碍与情绪和抑郁障碍有显著关联。还发现在默认模式网络中,后扣带回与左侧角回之间的功能连接有趋势水平的减弱,这与许多以往研究发现默认模式网络受损的结果一致。其他研究在认知控制网络和显著性网络中发现了功能连接减弱,而在这些网络中没有发现有抑郁症状的患者存在损伤。这种差异的一个可能解释是,上述研究检查了老年期抑郁患者,而本研究主要纳入了亚临床抑郁的受试者。研究想指出,对于老年期抑郁中哪些功能脑网络受损,目前尚无明确共识;然而,大多数研究发现在前额叶边缘网络和默认模式网络中存在功能连接减弱。没有发现证据表明抑郁症状对MCI患者的影响与认知未受损受试者不同。根据连接数量对MST中的研究网络枢纽进行了排名。研究发现,两个主要枢纽——后扣带回和前扣带回——位于前25%百分位,这表明这些是对于一般信息传递和电路级计算至关重要的核心枢纽。

由于“aMCI/DEP”亚组的样本量较小,通过合并MCI亚组并重复主要分析进行了敏感性分析,以检验结果的可靠性。结果没有改变,证明结果并非由于亚组划分所致。

在ACE和连线测试A和B中,有抑郁症状的受试者表现更差,而在健康和MCI受试者之间,抑郁频率(即病例;见方法部分的标准)没有差异。抑郁症状评分与认知测量之间的相关性与以往研究一致,可能表明抑郁患者存在一般性认知障碍。结合文献中的数据和以往研究结果表明,淀粉样蛋白沉积与抑郁症状之间没有关联,这一发现更多地表明抑郁患者认知衰退的风险更高,而不是痴呆的早期迹象。

尽管在有抑郁症状的受试者和非抑郁对照组之间没有发现结构差异,但在MCI受试者和认知健康的对照组之间,海马体积以及楔前叶和内嗅皮质的厚度有所不同。后两者在两种MCI亚型之间也有差异,遗忘型轻度认知障碍(aMCI)比非遗忘型轻度认知障碍(naMCI)萎缩更严重。这一发现与文献和以往的结果一致,因为aMCI被认为是阿尔茨海默病的高危人群。一些以往的研究在老年期抑郁中发现了各种脑区的结构损伤;然而,淀粉样蛋白负荷和亚临床抑郁症状之间没有关联,这表明在阿尔茨海默病中,认知和抑郁症状有不同的病理生理机制。本研究没有发现类似的损伤,一个可能的原因是应用了严格的认知障碍纳入标准,以排除痴呆患者。

限制

这项多中心研究旨在检测和监测老年人的认知障碍,而不是跟踪老年期抑郁。因此,没有进行像SCID或MINI这样的结构化临床访谈来评估精神障碍。此外,两个研究中心分别使用了不同的抑郁测量工具(GDS和13项BDI)。然而,随着认知和情感神经科学的发展,以及功能性磁共振成像等神经影像学技术的应用,精神病障碍的维度概念化逐渐兴起。因此,从维度角度进行分析符合最新的观点,例如精神病病理学的层级分类法和研究领域标准。此外,这种分析也受到一般心理测量学和伦理学论点的支持,这些论点倾向于使用维度指标而不是分类指标。因此,从维度角度进行分析符合对精神病障碍的最新观点。根据国际指南的建议,本研究没有测量阿尔茨海默病生物标志物,如β-淀粉样蛋白和tau蛋白。在本研究中,只分析了功能连接。没有包括像部分各向异性或平均扩散率这样的结构连接指标。研究组在人口统计学参数上略有差异,如教育水平、年龄和性别,因此所有这些变量都被作为协变量纳入分析。一些患者(n=22)正在接受抗抑郁治疗;然而,当从分析中排除这些受试者时,所有变化仍然显著。

5 总结

与之前的结果一致,楔前叶皮质变薄和海马体积减少等结构性损伤可能主要与早期认知能力下降有关。与此同时,抑郁症状与功能性网络属性有关,例如平均中枢偏心率、网络直径或度数分歧,而没有严重的结构性脑萎缩。这些网络损伤导致功能整合和网络弹性下降,而这似乎与认知损伤无关。

6 数据可用性

支持本研究结果的数据可根据合理请求从通讯作者处获得,[Gábor Csukly: csukly.gabor@semmelweis.hu; csugab@yahoo.com], upon reasonable request.

精读分享

研究背景

本文的研究背景聚焦于老年人中常见的抑郁症状及其与认知障碍的关系。抑郁症状和晚发性抑郁(LLD)在老年人中普遍存在,严重影响他们的生活质量,导致日常活动能力下降和社会联系减少。然而,LLD常常被误诊或未得到充分治疗,部分原因是许多老年人将抑郁症状归因于正常衰老或其他身体疾病。流行病学研究表明,LLD在私人家庭中的发生率为0.9%到9.4%,而在养老机构中则高达14%到42%。此外,近50%的亚临床抑郁患者在18个月内会发展为重度抑郁障碍(MDD),且其功能障碍与MDD患者相似。抑郁症状不仅对老年人的身心健康产生负面影响,还增加了社会和经济负担,包括更高的死亡率、更多的身体共病、更低的生活质量,以及对额外支持服务的需求。同时,抑郁症状与认知衰退之间的关联已被广泛证实,且这种关联可能是双向的:抑郁是血管疾病和阿尔茨海默病的风险因素,而抑郁也可能是认知衰退的早期症状。因此,研究老年人抑郁症状与认知障碍之间的神经生物学机制具有重要的科学意义和临床价值。

研究方法

本文采用多中心功能性磁共振成像(fMRI)研究方法,旨在探究老年人中认知未受损和轻度认知障碍(MCI)患者抑郁症状与大脑功能网络完整性的关系。研究共纳入183名老年受试者,分为遗忘型轻度认知障碍(aMCI)、非遗忘型轻度认知障碍(naMCI)和健康对照组(HC),并根据抑郁症状的存在与否进一步分为抑郁组和非抑郁组。研究使用13项贝克抑郁量表(BDI)或老年抑郁量表(GDS)评估抑郁症状,同时采用Rey听觉言语学习测试、Addenbrooke认知检查(ACE)和迷你精神状态检查(MMSE)等工具进行神经心理评估。所有受试者接受3T脑MRI扫描,包括T2、弥散和FLAIR加权序列,以识别可能的病理病变。功能连接分析基于CONN工具箱计算感兴趣区域(ROI)之间的功能连接矩阵,并采用最小生成树(MST)方法进行图论分析,评估网络的整合性(如平均偏心率和网络直径)、中心性(如最大介数中心性和叶分数)和弹性(如度发散)。此外,研究还对海马体体积、楔前叶和内嗅皮层厚度等结构MRI指标进行分析,以探讨抑郁症状与脑结构之间的潜在关联。

批判性思考与展望

本文在探讨老年人抑郁症状与大脑功能网络完整性的关系方面提供了重要的见解,但也存在一些局限性和值得进一步研究的方向。首先,研究设计为横断面研究,无法确定抑郁症状与功能网络改变之间的因果关系,未来需要纵向研究来明确时间顺序和因果机制。其次,尽管研究纳入了多中心数据,但样本量相对较小,且在某些亚组(如aMCI/抑郁组)中样本量有限,这可能影响结果的统计功效和普遍性。此外,研究未使用结构化临床访谈(如SCID或MINI)来诊断精神障碍,而是依赖于抑郁量表评分,这可能导致对抑郁症状的评估不够精确。未来的研究可以结合多种诊断工具,以提高诊断的准确性。再者,研究未测量阿尔茨海默病的生物标志物(如β-淀粉样蛋白和tau蛋白),这些标志物可能对理解抑郁症状与认知障碍之间的关系至关重要。未来的研究可以纳入这些生物标志物,以进一步揭示潜在的病理生理机制。最后,尽管研究发现抑郁症状与功能网络改变有关,但未探讨这些改变对认知功能和日常功能的具体影响。未来的研究可以进一步探索功能网络改变与认知表现、生活质量之间的关系,以更好地理解抑郁症状对老年人生活的影响,并为开发针对性的干预措施提供依据。总体而言,本文为理解老年人抑郁症状的神经生物学基础提供了新的视角,但需要更多的研究来克服现有局限,并进一步探索其临床应用价值。

结论

本文的结论指出,老年人中抑郁症状与大脑功能网络整合受损密切相关,表现为网络配置更倾向于路径状,导致功能整合能力下降,这可能是老年人抑郁症状的潜在原因。研究还发现,抑郁症状与前扣带回皮层和右杏仁核之间的功能连接减弱有关,这种连接受损与抑郁症状的严重程度相关。尽管MCI患者的海马体体积和楔前叶、内嗅皮层的厚度减少,但这些结构变化与抑郁症状之间并无直接关联。这表明,抑郁症状主要与大脑功能网络的改变有关,而与结构性脑萎缩关系不大。这一发现为理解老年人抑郁症状的神经生物学基础提供了新的视角,并为未来的干预措施提供了潜在的靶点。

参考文献:

Csukly G, Tombor L, Hidasi Z, et al. Low Functional network integrity in cognitively unimpaired and MCI subjects with depressive symptoms: results from a multi-center fMRI study. Transl Psychiatry 2024;14(1):179; doi: 10.1038/s41398-024-02891-2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值