类似于二维平面上车辆转动的CV,CA,CT模型。3维空间的CV、CA、CT模型也存在。用于目标跟踪时,需要考虑的角速度、速度、加速度之间的耦合关系更为复杂,所以本博客列举了这些公式。
- 恒定速度模型(Constant Velocity, CV)
- 恒定加速度模型(Constant Acceleration, CA)
- 恒定转弯率和速度幅度模型(Constant Turn Rate and Velocity, CTRV)
- 恒定转率和加速度模型(Constant Turn Rate and Acceleration,CTRA)
本博客突出CT模型,用于空中目标跟踪。
质点运动自然坐标系的分解
考虑质点运动学偏导数与全导数的关系:
v
=
d
r
d
t
=
∂
r
∂
t
+
ω
×
r
a
≡
d
v
d
t
=
∂
v
∂
t
+
ω
×
v
\boldsymbol{v}=\frac{\mathrm{d} \boldsymbol{r}}{\mathrm{d} t}=\frac{\partial \boldsymbol{r}}{\partial t}+\boldsymbol{\omega} \times \boldsymbol{r}\\ \boldsymbol{a}\equiv\frac{\mathrm d \boldsymbol v}{\mathrm d t}= \frac{\partial \boldsymbol v}{\partial t}+\boldsymbol{\omega} \times \boldsymbol v
v=dtdr=∂t∂r+ω×ra≡dtdv=∂t∂v+ω×v
一般的三维平面运动,在自然坐标系下的切向和法向的定义为:
- 速度方向为切向 τ \boldsymbol \tau τ
- 与速度垂直,指向曲线凹陷的一侧为法向 n \boldsymbol n n
- 切向与法向张成密切平面
注意这是一个动坐标系,相对惯性系的速度是
v
\boldsymbol v
v,旋转角速度是
w
\boldsymbol w
w(图中为Ω)。
惯性系下的加速度落在密切平面内,可得加速度分解的惠更斯公式
a
≡
d
v
d
t
=
a
t
+
a
n
\boldsymbol a\equiv\frac{\mathrm d \boldsymbol v}{\mathrm d t} =\boldsymbol a_t+\boldsymbol a_n
a≡dtdv=at+an或者表示为
a
t
=
∂
v
∂
t
=
a
t
⋅
τ
a
n
=
ω
×
v
\boldsymbol a_t=\frac{\partial \boldsymbol v}{\partial t}=a_t \cdot\boldsymbol \tau\\ \boldsymbol a_n=\boldsymbol{\omega} \times \boldsymbol v
at=∂t∂v=at⋅τan=ω×v上图展示了这种现象,也就是在
Span
{
τ
,
n
}
\text{Span}\{\boldsymbol \tau, \boldsymbol n \}
Span{τ,n}的正交空间内不存在加速度的分量。切向的单位矢量
τ
=
[
v
x
v
,
v
y
v
,
v
z
v
]
T
,
v
=
∥
v
∥
\boldsymbol \tau=\left[\frac{v_x}{v}, \frac{v_y}{v}, \frac{v_z}{v}\right]^{\mathrm T},v=\|\boldsymbol v\|
τ=[vvx,vvy,vvz]T,v=∥v∥
二维平面运动学总结
CT模型,或者一般的二维平面运动,都可写作密切平面内的如下形式:
x
˙
(
t
)
=
v
(
t
)
cos
ϕ
(
t
)
y
˙
(
t
)
=
v
(
t
)
sin
ϕ
(
t
)
v
˙
(
t
)
=
a
t
(
t
)
ϕ
˙
(
t
)
=
a
r
(
t
)
/
v
(
t
)
≡
w
(1)
\begin{aligned} &\dot{x}(t)=v(t) \cos \phi(t) \\ &\dot{y}(t)=v(t) \sin \phi(t) \\ &\dot{v}(t)=a_{t}(t) \\ &\dot{\phi}(t)=a_{r}(t) / v(t) \equiv w \end{aligned}\tag{1}
x˙(t)=v(t)cosϕ(t)y˙(t)=v(t)sinϕ(t)v˙(t)=at(t)ϕ˙(t)=ar(t)/v(t)≡w(1)其中
a
n
,
a
t
a_n,a_t
an,at分别代表法向加速度与切向加速度,
w
w
w为转弯角速度,
ϕ
\phi
ϕ为速度方向角
ϕ
=
arctan
(
v
y
/
v
x
)
=
arcsin
(
v
y
/
v
)
\phi=\arctan({v_y}/{v_x})=\arcsin({v_y}/{v})
ϕ=arctan(vy/vx)=arcsin(vy/v)。
- a n = 0 , a t = 0 a_n=0,a_t=0 an=0,at=0——直线,CV运动
- a n = 0 , a t ≠ 0 a_n=0,a_t\neq0 an=0,at=0——直线,加速运动。若 a t = C a_t=C at=C,CA运动
- a n ≠ 0 , a t = 0 a_n\neq0,a_t=0 an=0,at=0——弧线,匀速率运动。若 a n = C a_n=C an=C,则为CTRV运动
- a n ≠ 0 , a t ≠ 0 a_n\neq0,a_t\neq0 an=0,at=0——曲线运动。若 a n = C 1 , a t = C 2 a_n=C_1,a_t=C_2 an=C1,at=C2,则为CTRA运动
假设CTRV运动的角速度
w
w
w已知,写到笛卡尔坐标系下,动力学方程成了
x
˙
(
t
)
=
v
x
(
t
)
y
˙
(
t
)
=
v
y
(
t
)
v
˙
x
(
t
)
=
a
x
=
−
w
⋅
v
y
v
˙
y
(
t
)
=
a
y
=
+
w
⋅
v
x
(2)
\begin{aligned} &\dot{x}(t)=v_x(t) \\ &\dot{y}(t)=v_y(t)\\ &\dot{v}_x(t)=a_x=-w \cdot v_y\\ &\dot{v}_y(t)=a_y=+w \cdot v_x \end{aligned}\tag{2}
x˙(t)=vx(t)y˙(t)=vy(t)v˙x(t)=ax=−w⋅vyv˙y(t)=ay=+w⋅vx(2)上式和式(1)的关系是:对于CTRV模型,局部加速度
∂
v
∂
t
\frac{\partial \boldsymbol v}{\partial t}
∂t∂v为0,则惯性系的加速度
d
v
d
t
=
[
a
x
,
a
y
]
\frac{\mathrm d\boldsymbol v}{\mathrm dt}=[a_x,a_y]
dtdv=[ax,ay]只由旋转造成,即
a
=
ω
×
v
\boldsymbol a=\boldsymbol{\omega} \times \boldsymbol v
a=ω×v,它的大小
a
=
a
t
2
+
a
n
2
a=\sqrt{a_t^2+a_n^2}
a=at2+an2.
式(2)中只有1项最终的不确定量,加速度表示为有关 w w w_w ww的白噪声,变换可得到。角速度 w w w未知,则写成白噪声或一阶Markov过程。
ω
˙
(
t
)
=
w
w
ω
˙
(
t
)
=
−
1
τ
w
ω
(
t
)
+
w
w
\dot \omega(t)=\text{w}_w\\ \dot \omega(t)=-\frac{1}{\tau _w}\omega(t)+\text{w}_w
ω˙(t)=wwω˙(t)=−τw1ω(t)+ww上式与公式(1)-(2)可联立,构成5维的状态空间模型,其噪声是
w
w
w_w
ww. 再将加速度大小合二为一,则CTRA模型是:
x
˙
(
t
)
=
v
(
t
)
cos
ϕ
(
t
)
y
˙
(
t
)
=
v
(
t
)
sin
ϕ
(
t
)
v
˙
(
t
)
=
a
(
t
)
ϕ
˙
(
t
)
=
ω
(
t
)
ω
˙
(
t
)
=
−
1
τ
w
ω
(
t
)
+
w
w
a
˙
(
t
)
=
w
a
(3)
\begin{aligned} &\dot{x}(t)=v(t) \cos \phi(t) \\ &\dot{y}(t)=v(t) \sin \phi(t) \\ &\dot{v}(t)=a(t) \\ &\dot{\phi}(t)=\omega(t)\\ &\dot{\omega}(t)=-\frac{1}{\tau _w}\omega(t)+\text{w}_w\\ &\dot{a}(t)=\text{w}_a \end{aligned}\tag{3}
x˙(t)=v(t)cosϕ(t)y˙(t)=v(t)sinϕ(t)v˙(t)=a(t)ϕ˙(t)=ω(t)ω˙(t)=−τw1ω(t)+wwa˙(t)=wa(3)其中
w
w
,
w
a
\text{w}_w,\text{w}_a
ww,wa代表角速度大小的噪声、加速度大小的噪声;将上式的部分项建模为随机噪声就成了CTRV(1-5行),CA(1-4行),CV(1-3行)模型,每个模型中没有作为状态量变量的都为0,假设为均值为0的随机值
w
k
\text{w}_k
wk驱动的。
实际上CA模型和CV模型由于前2项在转弯坐标系中式(1)是非线性形式,而在笛卡尔坐标系内式(2)运动模型是线性的,所以类似方程(1)、(3)的形式一般默认为CT模型,而不用来表示CA、CV运动。
作为式(3)的一种补充,考虑到切向加速度与速度单位矢量
τ
\boldsymbol \tau
τ方向一致,角速度转化成法向加速度
w
=
a
n
/
v
w={a_n}/{v}
w=an/v,则二维平面的CTRA模型也写作:
x
˙
(
t
)
=
v
x
(
t
)
y
˙
(
t
)
=
v
y
(
t
)
v
˙
x
(
t
)
=
a
t
⋅
v
x
v
−
a
n
v
⋅
v
y
v
˙
y
(
t
)
=
a
t
⋅
v
y
v
+
a
n
v
⋅
v
x
a
˙
t
(
t
)
=
w
t
(
t
)
a
˙
n
(
t
)
=
w
n
(
t
)
(2.5)
\begin{aligned} &\dot{x}(t)=v_x(t) \\ &\dot{y}(t)=v_y(t)\\ &\dot{v}_x(t)=a_t\cdot \frac{v_x}{v} - \frac{a_n}{v} \cdot v_y \\ &\dot{v}_y(t)=a_t\cdot \frac{v_y}{v} + \frac{a_n}{v} \cdot v_x \\ &\dot{a}_t(t) = \text{w}_t(t) \\ &\dot{a}_n(t) = \text{w}_n(t) \end{aligned}\tag{2.5}
x˙(t)=vx(t)y˙(t)=vy(t)v˙x(t)=at⋅vvx−van⋅vyv˙y(t)=at⋅vvy+van⋅vxa˙t(t)=wt(t)a˙n(t)=wn(t)(2.5)
三维空间运动模型
CV
假设惯性系速度不变,考虑速度为随机噪声扰动的CV模型的状态定义为
x
=
[
x
,
y
,
z
,
v
x
,
v
y
,
v
z
]
T
\mathbf x=[x,y,z,v_x,v_y,v_z]^{\mathrm T}
x=[x,y,z,vx,vy,vz]T
x
˙
(
t
)
=
[
0
3
I
3
0
3
0
3
]
x
(
t
)
+
[
0
3
I
3
]
w
(
t
)
\dot{\mathbf{x}}(t)=\left[\begin{array}{ll} \mathbf{0}_{3} & \mathbf{I}_{3} \\ \mathbf{0}_{3} & \mathbf{0}_{3} \end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l} \mathbf{0}_{3} \\ \mathbf{I}_{3} \end{array}\right] \mathbf{w}(t)
x˙(t)=[0303I303]x(t)+[03I3]w(t)
CA
假设惯性系加速度为不变,考虑加速度为一阶Markov噪声的CA模型的状态定义为
x
=
[
x
,
y
,
z
,
v
x
,
v
y
,
v
z
,
a
x
,
a
y
,
a
z
]
T
\mathbf x=[x,y,z,v_x,v_y,v_z,a_x,a_y,a_z]^{\mathrm T}
x=[x,y,z,vx,vy,vz,ax,ay,az]T
x
˙
(
t
)
=
[
0
3
I
3
0
3
0
3
0
3
I
3
0
3
0
3
−
I
3
τ
a
]
x
(
t
)
+
[
0
3
0
3
I
3
]
w
(
t
)
\dot{\mathbf{x}}(t)=\left[\begin{array}{lll} \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \\ \boldsymbol{0}_{3} & \mathbf{0}_{3}& \mathbf{I}_{3} \\ \boldsymbol{0}_{3} & \mathbf{0}_{3} & - \frac{ \mathbf{I}_{3}}{\tau _a} \end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l} \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{I}_{3} \end{array}\right] \mathbf w(t)
x˙(t)=⎣
⎡030303I3030303I3−τaI3⎦
⎤x(t)+⎣
⎡0303I3⎦
⎤w(t)若噪声为高斯白噪声,离散化后得到
x
(
k
+
1
)
=
[
I
3
Δ
t
⋅
I
3
Δ
t
2
2
I
3
0
3
I
3
Δ
t
⋅
I
3
0
3
0
3
I
3
]
[
r
(
k
)
v
(
k
)
a
(
k
)
]
+
[
Δ
t
2
2
I
3
Δ
t
⋅
I
3
I
3
]
w
(
t
)
{\mathbf{x}}(k+1)=\left[\begin{array}{lll} \mathbf{I}_{3} & \Delta t\cdot\mathbf{I}_{3}& \frac{\Delta t^2}{2}\mathbf{I}_{3} \\ \boldsymbol{0}_{3} & \mathbf{I}_{3}& \Delta t\cdot\mathbf{I}_{3} \\ \boldsymbol{0}_{3} & \boldsymbol{0}_{3} & \mathbf{I}_{3} \end{array}\right] \left[\begin{array}{l} \mathbf{r}(k)\\ \mathbf{v}(k)\\ \mathbf{a}(k) \end{array}\right] + \left[\begin{array}{l} \frac{\Delta t^2}{2} \mathbf{I}_{3} \\ \Delta t\cdot\mathbf{I}_{3} \\ \mathbf{I}_{3} \end{array}\right] \mathbf w(t)
x(k+1)=⎣
⎡I30303Δt⋅I3I3032Δt2I3Δt⋅I3I3⎦
⎤⎣
⎡r(k)v(k)a(k)⎦
⎤+⎣
⎡2Δt2I3Δt⋅I3I3⎦
⎤w(t)
考虑噪声为一阶Markov过程,离散化后得到
x
(
k
+
1
)
=
[
I
3
Δ
t
⋅
I
3
Δ
t
2
2
I
3
0
3
0
3
I
3
Δ
t
⋅
I
3
0
3
0
3
0
3
I
3
I
3
0
3
0
3
0
3
(
1
−
1
τ
a
)
I
3
]
[
r
(
k
)
v
(
k
)
a
(
k
)
ξ
(
k
)
]
+
[
Δ
t
2
2
I
3
Δ
t
⋅
I
3
0
3
I
3
]
w
(
t
)
{\mathbf{x}}(k+1)=\left[\begin{array}{lll} \mathbf{I}_{3} & \Delta t\cdot\mathbf{I}_{3}& \frac{\Delta t^2}{2}\mathbf{I}_{3} & \mathbf{0}_{3} \\ \boldsymbol{0}_{3} & \mathbf{I}_{3}& \Delta t\cdot\mathbf{I}_{3} & \mathbf{0}_{3}\\ \boldsymbol{0}_{3} & \boldsymbol{0}_{3} & \mathbf{I}_{3}& \mathbf{I}_{3}\\ \boldsymbol{0}_{3} & \boldsymbol{0}_{3} &\boldsymbol{0}_{3} & (1- \frac{1}{\tau _a})\mathbf{I}_{3} \end{array}\right] \left[\begin{array}{l} \mathbf{r}(k)\\ \mathbf{v}(k)\\ \mathbf{a}(k)\\ \mathbf{\xi}(k) \end{array}\right] + \left[\begin{array}{l} \frac{\Delta t^2}{2} \mathbf{I}_{3} \\ \Delta t\cdot\mathbf{I}_{3} \\ \mathbf{0}_{3}\\ \mathbf{I}_{3} \end{array}\right] \mathbf w(t)
x(k+1)=⎣
⎡I3030303Δt⋅I3I303032Δt2I3Δt⋅I3I3030303I3(1−τa1)I3⎦
⎤⎣
⎡r(k)v(k)a(k)ξ(k)⎦
⎤+⎣
⎡2Δt2I3Δt⋅I303I3⎦
⎤w(t)
CA模型没有考虑加速度与轨迹的关系。
前2个的状态转移矩阵内没有状态,是线性系统。但CT模型都是非线性系统。
三维恒定速率、角速率(CS-CT)运动
(Constant Speed - Constant Turn Rate)此模型假设目标沿空间弧线运动的速率不变即
a
t
=
0
a_t=0
at=0、角速度
w
\boldsymbol w
w不变,则转弯带来加速度
a
=
ω
×
v
\boldsymbol a=\boldsymbol{\omega} \times \boldsymbol v
a=ω×v。状态定义为
x
=
[
x
,
y
,
z
,
v
x
,
v
y
,
v
z
,
w
x
,
w
y
,
w
z
]
T
\mathbf x=[x,y,z,v_x,v_y,v_z,w_x,w_y,w_z]^{\mathrm T}
x=[x,y,z,vx,vy,vz,wx,wy,wz]T
x
˙
(
t
)
=
[
0
3
I
3
0
3
0
3
Ω
0
3
0
3
0
3
0
3
]
x
(
t
)
+
[
0
3
0
3
I
3
]
w
(
t
)
(4)
\dot{\mathbf{x}}(t)=\left[\begin{array}{lll} \mathbf{0}_{3} & \mathbf{I}_{3} & \mathbf{0}_{3} \\ \boldsymbol{0}_{3} & \mathbf{\Omega} & \mathbf{0}_{3} \\ \boldsymbol{0}_{3} & \mathbf{0}_{3} & \mathbf{0}_{3} \end{array}\right] \mathbf{x}(t)+\left[\begin{array}{l} \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{I}_{3} \end{array}\right] \mathbf{w}(t)\tag{4}
x˙(t)=⎣
⎡030303I3Ω03030303⎦
⎤x(t)+⎣
⎡0303I3⎦
⎤w(t)(4)其中的矩阵
Ω
(
w
)
=
[
0
−
ω
z
ω
y
ω
z
0
−
ω
x
−
ω
y
ω
x
0
]
\mathbf\Omega(\boldsymbol w)=\left[\begin{array}{ccc} 0 & -\omega_{z} & \omega_{y} \\ \omega_{z} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{array}\right]
Ω(w)=⎣
⎡0ωz−ωy−ωz0ωxωy−ωx0⎦
⎤CT模型由于存在角速度对加速度的牵连加速度项,因而是非线性模型,线性化为离散系统为(假设时间步长为
T
T
T):
x
(
k
+
1
)
=
Φ
(
k
+
1
,
k
)
x
(
k
)
+
Γ
(
k
+
1
,
k
)
w
(
k
)
\mathbf{x}(k+1)=\boldsymbol{\Phi}(k+1,k)\mathbf{x}(k)+\boldsymbol{\Gamma}(k+1,k)\mathbf{w}(k)
x(k+1)=Φ(k+1,k)x(k)+Γ(k+1,k)w(k)其中的
Φ
=
[
I
3
B
0
3
0
3
I
3
+
A
0
3
0
3
0
3
I
3
]
,
Γ
=
[
0
3
0
3
I
3
]
,
Q
=
[
0
3
0
3
0
3
0
3
0
3
0
3
0
3
0
3
I
3
]
σ
2
2
A
=
[
c
1
d
1
−
c
2
ω
z
−
c
1
ω
x
ω
y
c
2
ω
y
−
c
1
ω
x
ω
z
c
2
ω
z
−
c
1
ω
x
ω
y
c
1
d
2
−
c
2
ω
x
−
c
1
ω
y
ω
z
−
c
2
ω
y
−
c
1
ω
x
ω
z
c
2
ω
x
−
c
1
ω
y
ω
z
c
1
d
3
]
B
=
[
c
3
d
1
c
1
ω
z
−
c
3
ω
x
ω
y
−
c
1
ω
y
−
c
3
ω
x
ω
z
−
c
1
ω
z
−
c
3
ω
x
ω
y
c
3
d
2
c
1
ω
x
−
c
3
ω
y
ω
z
c
1
ω
y
−
c
3
ω
x
ω
z
−
c
1
ω
x
−
c
3
ω
y
ω
z
c
3
d
3
]
\begin{aligned} \boldsymbol{\Phi} &=\left[\begin{array}{ccc} \mathbf{I}_{3} & \mathbf{B} & \mathbf{0}_{3} \\ 0_{3} & \mathbf{I}_{3}+\mathbf{A} & \mathbf{0}_{3} \\ 0_{3} & \mathbf{0}_{3} & \mathbf{I}_{3} \end{array}\right], \boldsymbol{\Gamma}=\left[\begin{array}{l} \mathbf{0}_{3} \\ \mathbf{0}_{3} \\ \mathbf{I}_{3} \end{array}\right], \mathbf{Q}=\left[\begin{array}{ccc} \mathbf{0}_{3} & \mathbf{0}_{3} & 0_{3} \\ 0_{3} & 0_{3} & 0_{3} \\ 0_{3} & 0_{3} & \mathbf{I}_{3} \end{array}\right] \sigma_{2}^{2} \\ \mathbf{A} &=\left[\begin{array}{ccc} c_{1} d_{1} & -c_{2} \omega_{z}-c_{1} \omega_{x} \omega_{y} & c_{2} \omega_{y}-c_{1} \omega_{x} \omega_{z} \\ c_{2} \omega_{z}-c_{1} \omega_{x} \omega_{y} & c_{1} d_{2} & -c_{2} \omega_{x}-c_{1} \omega_{y} \omega_{z} \\ -c_{2} \omega_{y}-c_{1} \omega_{x} \omega_{z} & c_{2} \omega_{x}-c_{1} \omega_{y} \omega_{z} & c_{1} d_{3} \end{array}\right] \\ \mathbf{B} &=\left[\begin{array}{ccc} c_{3} d_{1} & c_{1} \omega_{z}-c_{3} \omega_{x} \omega_{y} & -c_{1} \omega_{y}-c_{3} \omega_{x} \omega_{z} \\ -c_{1} \omega_{z}-c_{3} \omega_{x} \omega_{y} & c_{3} d_{2} & c_{1} \omega_{x}-c_{3} \omega_{y} \omega_{z} \\ c_{1} \omega_{y}-c_{3} \omega_{x} \omega_{z} & -c_{1} \omega_{x}-c_{3} \omega_{y} \omega_{z} & c_{3} d_{3} \end{array}\right] \end{aligned}
ΦAB=⎣
⎡I30303BI3+A030303I3⎦
⎤,Γ=⎣
⎡0303I3⎦
⎤,Q=⎣
⎡0303030303030303I3⎦
⎤σ22=⎣
⎡c1d1c2ωz−c1ωxωy−c2ωy−c1ωxωz−c2ωz−c1ωxωyc1d2c2ωx−c1ωyωzc2ωy−c1ωxωz−c2ωx−c1ωyωzc1d3⎦
⎤=⎣
⎡c3d1−c1ωz−c3ωxωyc1ωy−c3ωxωzc1ωz−c3ωxωyc3d2−c1ωx−c3ωyωz−c1ωy−c3ωxωzc1ωx−c3ωyωzc3d3⎦
⎤文献【3】推导出了参数
d
1
=
ω
y
2
+
ω
z
2
,
d
2
=
ω
x
2
+
ω
z
2
,
d
3
=
ω
x
2
+
ω
y
2
,
c
1
=
cos
Ω
T
−
1
Ω
2
,
c
2
=
sin
Ω
T
Ω
,
c
3
=
1
Ω
2
(
sin
Ω
T
Ω
−
T
)
.
\begin{aligned} &d_{1}=\omega_{y}^{2}+\omega_{z}^{2} \quad, \quad d_{2}=\omega_{x}^{2}+\omega_{z}^{2} \quad, \quad d_{3}=\omega_{x}^{2}+\omega_{y}^{2}, \\ &c_{1}=\frac{\cos \Omega T-1}{\Omega^{2}}, c_{2}=\frac{\sin \Omega T}{\Omega}, c_{3}=\frac{1}{\Omega^{2}}\left(\frac{\sin \Omega T}{\Omega}-T\right) . \end{aligned}
d1=ωy2+ωz2,d2=ωx2+ωz2,d3=ωx2+ωy2,c1=Ω2cosΩT−1,c2=ΩsinΩT,c3=Ω21(ΩsinΩT−T).以及
Ω
=
∥
w
∥
\Omega=\| \boldsymbol w\|
Ω=∥w∥. 需要注意,这个模型的非线性程度非常高,在使用的时候三轴角速度的估计比较困难。
三维平面运动CTRV模型
在CS-CT模型中尚未考虑平面运动假设,它可以三维螺线运动。
下面的这种是更普遍认同的(Constant Turn Rate and Speed,CTRV)模型,对应于二维CTRV运动。包含了
- 三维恒定速率、
- 恒定角速率、
- 平面运动
假设,平面运动假设即角速度变化率沿着角速度方向
ω
˙
=
k
⋅
ω
∥
ω
∥
=
−
1
τ
w
ω
\dot{\boldsymbol\omega} =k\cdot \frac{\boldsymbol\omega}{\|\boldsymbol\omega\|} =-\frac{1}{\tau _w}\boldsymbol\omega
ω˙=k⋅∥ω∥ω=−τw1ω
其中
k
(
t
)
,
τ
w
(
t
)
k(t),\tau_w(t)
k(t),τw(t)均为待估计的状态量。如果恒定速率、平面运动同时考虑,则为以下模型
x
˙
(
t
)
=
v
x
(
t
)
y
˙
(
t
)
=
v
y
(
t
)
z
˙
(
t
)
=
v
z
(
t
)
v
˙
x
(
t
)
=
w
y
⋅
v
z
−
w
z
⋅
v
y
v
˙
y
(
t
)
=
w
z
⋅
v
x
−
w
x
⋅
v
z
v
˙
z
(
t
)
=
w
x
⋅
v
y
−
w
y
⋅
v
x
ω
˙
(
t
)
=
−
1
τ
w
ω
(
t
)
τ
w
˙
=
w
τ
(5)
\begin{aligned} &\dot{x}(t)=v_x(t) \\ &\dot{y}(t)=v_y(t)\\ &\dot{z}(t)=v_z(t)\\ &\dot{v}_x(t)=w_y\cdot v_z-w_z \cdot v_y\\ &\dot{v}_y(t)=w_z\cdot v_x-w_x \cdot v_z\\ &\dot{v}_z(t)=w_x\cdot v_y-w_y \cdot v_x\\ &\dot{\boldsymbol\omega}(t)=-\frac{1}{\tau _w}\boldsymbol\omega(t) \\ &\dot{\tau _w}=w_{\tau} \end{aligned}\tag{5}
x˙(t)=vx(t)y˙(t)=vy(t)z˙(t)=vz(t)v˙x(t)=wy⋅vz−wz⋅vyv˙y(t)=wz⋅vx−wx⋅vzv˙z(t)=wx⋅vy−wy⋅vxω˙(t)=−τw1ω(t)τw˙=wτ(5)其中角速度
w
\boldsymbol w
w方向不变、大小变化,加速度只包含旋转加速度
a
=
ω
×
v
\boldsymbol a = \boldsymbol{\omega} \times \boldsymbol v
a=ω×v。此模型需要估计目标的位置、惯性系速度、角速度、角速度变化率,即
x
=
[
x
,
y
,
z
,
v
x
,
v
y
,
v
z
,
w
x
,
w
y
,
w
z
,
τ
w
]
T
\boldsymbol x=[x,y,z,v_x,v_y,v_z,w_x,w_y,w_z,\tau _w]^{\mathrm T}
x=[x,y,z,vx,vy,vz,wx,wy,wz,τw]T
三维弹道系分解的CTRA模型
在三维空间平面内的CTRA模型为,
x
˙
(
t
)
=
v
x
(
t
)
y
˙
(
t
)
=
v
y
(
t
)
z
˙
(
t
)
=
v
z
(
t
)
v
˙
x
(
t
)
=
a
t
⋅
v
x
v
+
w
y
⋅
v
z
−
w
z
⋅
v
y
v
˙
y
(
t
)
=
a
t
⋅
v
y
v
+
w
z
⋅
v
x
−
w
x
⋅
v
z
v
˙
z
(
t
)
=
a
t
⋅
v
z
v
+
w
x
⋅
v
y
−
w
y
⋅
v
x
ω
˙
(
t
)
=
w
w
a
˙
t
(
t
)
=
w
a
(5)
\begin{aligned} &\dot{x}(t)=v_x(t) \\ &\dot{y}(t)=v_y(t)\\ &\dot{z}(t)=v_z(t)\\ &\dot{v}_x(t)=a_t\cdot \frac{v_x}{v}+w_y\cdot v_z-w_z \cdot v_y\\ &\dot{v}_y(t)=a_t\cdot \frac{v_y}{v}+w_z\cdot v_x-w_x \cdot v_z\\ &\dot{v}_z(t)=a_t\cdot \frac{v_z}{v}+w_x\cdot v_y-w_y \cdot v_x\\ &\dot{\boldsymbol\omega}(t)=\mathbf{w}_w\\ &\dot{a}_t(t)=\text{w}_a \end{aligned}\tag{5}
x˙(t)=vx(t)y˙(t)=vy(t)z˙(t)=vz(t)v˙x(t)=at⋅vvx+wy⋅vz−wz⋅vyv˙y(t)=at⋅vvy+wz⋅vx−wx⋅vzv˙z(t)=at⋅vvz+wx⋅vy−wy⋅vxω˙(t)=wwa˙t(t)=wa(5)其中
a
t
≠
0
a_t\neq0
at=0、角速度
w
\boldsymbol w
w不变,则加速度由2部分构成
a
=
a
t
⋅
τ
+
ω
×
v
\boldsymbol a = a_t\cdot \boldsymbol \tau+ \boldsymbol{\omega} \times \boldsymbol v
a=at⋅τ+ω×v。CTRA模型需要估计目标的位置、惯性系速度、角速度、切向加速度,即
x
=
[
x
,
y
,
z
,
v
x
,
v
y
,
v
z
,
w
x
,
w
y
,
w
z
,
a
t
]
T
\boldsymbol x=[x,y,z,v_x,v_y,v_z,w_x,w_y,w_z,a_t]^{\mathrm T}
x=[x,y,z,vx,vy,vz,wx,wy,wz,at]T。但公式(5)比较少见,更常用的是三维空间的CA模型 。更进一步的力学内容,可参考论文【2】.
平面ACT模型
假设目标的运动轨迹基本上在一个平面内,那么它的角速度朝向是始终不变的,这样是三维CT模型的一个更常用的形式。如果恒定速率、平面运动同时考虑,则为以下模型
x
˙
(
t
)
=
v
x
(
t
)
y
˙
(
t
)
=
v
y
(
t
)
v
˙
x
(
t
)
=
w
z
⋅
v
y
v
˙
y
(
t
)
=
−
w
z
⋅
v
x
w
z
˙
=
ξ
w
(
t
)
(5)
\begin{aligned} &\dot{x}(t)=v_x(t) \\ &\dot{y}(t)=v_y(t)\\ &\dot{v}_x(t)=w_z\cdot v_y\\ &\dot{v}_y(t)=-w_z \cdot v_x\\ &\dot{w_z}=\xi_w(t) \end{aligned}\tag{5}
x˙(t)=vx(t)y˙(t)=vy(t)v˙x(t)=wz⋅vyv˙y(t)=−wz⋅vxwz˙=ξw(t)(5)其中角速度
ω
\omega
ω受有色噪声或白噪声驱动,加速度只包含旋转加速度
a
=
ω
×
v
\boldsymbol a = \boldsymbol{\omega} \times \boldsymbol v
a=ω×v。模型中包含转弯角速度,这种模型被称为扩维的转弯模型(Augmented Constant Turn, ACT)。此模型需要估计目标的平面位置、速度、转动角速度,即
x
=
[
x
,
y
,
v
x
,
v
y
,
w
z
]
T
\boldsymbol x=[x,y,v_x,v_y,w_z]^{\mathrm T}
x=[x,y,vx,vy,wz]T,此时方程的离散形式为:
[
x
(
k
+
1
)
y
(
k
+
1
)
v
x
(
k
+
1
)
v
y
(
k
+
1
)
ω
(
k
+
1
)
]
=
[
x
+
1
ω
sin
(
ω
T
)
v
x
−
1
ω
(
1
−
cos
(
ω
T
)
)
v
y
y
+
1
ω
(
1
−
cos
(
ω
T
)
)
v
x
+
1
ω
(
sin
(
ω
T
)
)
v
y
v
x
cos
(
ω
T
)
−
v
y
sin
(
ω
T
)
v
x
sin
(
ω
T
)
+
v
y
cos
(
ω
T
)
0
]
+
Γ
w
\left[\begin{array}{ccccc} x(k+1)\\ y(k+1)\\ v_x(k+1)\\ v_y(k+1)\\ \omega(k+1) \end{array}\right]= \left[\begin{array}{c} x+\frac{1}{\omega} \sin (\omega T)v_x-\frac{1}{\omega}(1-\cos (\omega T))v_y \\ y+\frac{1}{\omega}(1-\cos (\omega T))v_x+\frac{1}{\omega}(\sin (\omega T))v_y \\ v_x \cos (\omega T)-v_y \sin (\omega T) \\ v_x \sin (\omega T)+v_y \cos (\omega T) \\ 0 \end{array}\right] + \Gamma \mathbf w
⎣
⎡x(k+1)y(k+1)vx(k+1)vy(k+1)ω(k+1)⎦
⎤=⎣
⎡x+ω1sin(ωT)vx−ω1(1−cos(ωT))vyy+ω1(1−cos(ωT))vx+ω1(sin(ωT))vyvxcos(ωT)−vysin(ωT)vxsin(ωT)+vycos(ωT)0⎦
⎤+Γw考虑角速度为常值且由白噪声驱动。在这之中,ACT模型的转动角速度直接决定跟踪精度,所以如果为了收敛更快,会把加速度、角速度中均包含噪声项
w
=
[
w
a
x
,
w
a
y
,
w
w
]
T
\mathbf w=[w_{ax},w_{ay},w_w]^{\mathrm T}
w=[wax,way,ww]T:
Γ
w
=
[
Δ
t
2
2
⋅
I
2
0
2
×
1
Δ
t
⋅
I
2
0
2
×
1
0
1
×
2
1
]
[
w
a
x
w
a
y
w
w
]
\Gamma \mathbf w= \left[\begin{array}{cc} \frac{\Delta t^{2}}{2} \cdot \boldsymbol{I}_{2} & 0_{2 \times 1} \\ \Delta t \cdot \boldsymbol{I}_{2} & 0_{2 \times 1} \\ 0_{1 \times 2} & 1 \end{array}\right] \left[\begin{array}{ccccc} w_{ax}\\ w_{ay}\\ w_w \end{array}\right]
Γw=⎣
⎡2Δt2⋅I2Δt⋅I201×202×102×11⎦
⎤⎣
⎡waxwayww⎦
⎤
如果角速度由一阶Markov过程噪声驱动,那么它的表达式为:
ω
˙
=
−
1
τ
w
ω
+
w
w
\dot\omega =-\frac{1}{\tau _w}\omega + w_w
ω˙=−τw1ω+ww其中
τ
w
\tau _w
τw为相关噪声的时间相关系数,与时间同量纲。这个式子的离散形式为:
ω
(
k
+
1
)
=
exp
(
T
τ
w
)
ω
(
k
)
+
w
w
(
k
)
\omega(k+1) = \exp(\frac{T}{\tau_w})\omega(k) + w_w(k)
ω(k+1)=exp(τwT)ω(k)+ww(k)由于系数
τ
w
{\tau_w}
τw是人为设定的,因此这个式子也写作
ω
(
k
+
1
)
=
α
⋅
ω
(
k
)
+
w
w
(
k
)
\omega(k+1) =\alpha\cdot\omega(k) + w_w(k)
ω(k+1)=α⋅ω(k)+ww(k)其中
α
∈
(
0
,
1
)
\alpha\in(0,1)
α∈(0,1)
参考
- CSDN博客3月16日 CV,CA,CTRV等运动模型,EKF,UKF在运动模型下的分析与实践
- Li, X. R., & Jilkov, V. P. (2003). Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 39(4), 1333-1364. doi:10.1109/TAES.2003.1261132
- Ronghui, Z., & Wan, J. (2006). Passive maneuvering target tracking using 3D constant-turn model. 2006 IEEE Conference on Radar. doi:10.1109/RADAR.2006.1631832