论文题目
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training
发表日期、所属会议/期刊/预印本
KDD 2020
做得什么
使用自监督任务对GNN进行预训练,然后针对不同的图学习任务对其进行微调。使用图形对比编码(GCC)框架来学习跨图形的结构表示。
怎么做的(重点)
-
GCC的预训练和微调阶段,如图:
-
预训练
- 目标: 预先训练一个通用图神经网络编码器,以捕获这些图背后的结构模式。
- 采用InfoNCE Loss,q,k为编码查询实例和密钥实例( NCE 的核心思想就是通过学习数据分布样本和噪声分布样本之间的区别,从而发现数据中的一些特性。),如图:
- r-ego网络:对于某个顶点v,定义了一个实例为其r-ego网络, 而子图是由不同邻居节点产生的图。GCC将每个ego网络视为其自