GCC 文献阅读笔记

GCC是2020年KDD会议上提出的一种用于图神经网络预训练的方法,通过自监督任务学习跨图形的结构表示。它采用图形对比编码框架,利用InfoNCE损失和r-ego网络区分相似与不同实例。GCC在预训练后可针对不同的图学习任务进行微调,适用于图级和节点级任务。实验表明,预训练的GCC在多个图形学习任务上的性能与从头开始的监督训练相当。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training

发表日期、所属会议/期刊/预印本

KDD 2020

做得什么

使用自监督任务对GNN进行预训练,然后针对不同的图学习任务对其进行微调。使用图形对比编码(GCC)框架来学习跨图形的结构表示。

怎么做的(重点)

  • GCC的预训练和微调阶段,如图:

  •  预训练        

  1. 目标: 预先训练一个通用图神经网络编码器,以捕获这些图背后的结构模式。
  2. 采用InfoNCE Loss,q,k为编码查询实例和密钥实例( NCE 的核心思想就是通过学习数据分布样本和噪声分布样本之间的区别,从而发现数据中的一些特性。),如图:

  3. r-ego网络:对于某个顶点v,定义了一个实例为其r-ego网络, 而子图是由不同邻居节点产生的图。GCC将每个ego网络视为其自身的一个独特类,并鼓励模型区分相似实例和不同实例。如图:

  4. 将子图作为对比实例,将每个顶点扩展到其局部结构。当字典为3时,对子图r-ego网络随机增加两个子图q、k0,而另一个子图产生的子图为噪声图k1、k2,对两个部分{(q), {k0,k1,k2}}用图编码器f_q与f_k进行编码,用 1 中的损失模型进行区分,如图:

     

  5. 实际的字典会很大,则采用端到端(E2E)和动量对比(MoCo)有效构建和维护字典。E2E采样小批量的实例,并将相同小批量中的样本视为字典。MoCo旨在增加字典的大小,而没有额外的反向传播成本。
  •  微调

  1. 下游任务分为:图级和节点级,目标为预测图或节点的标签。图级任务,输入图本身可以由GCC进行编码;节点级的任务,节点表示可以通过编码其 r-ego 网络。然后将编码后的数据输入到下游任务中。
  2. 微调策略:freezing 和 full fine-tuning。
  3. GCC通过基于随机游走的图采样方法来探索局部结,使得GCC能扩展到大规模的图学习任务,并对分布式计算非常友好。
  • 实验

  1. 在十个图形数据集上,预训练的图形神经网络在三个图形学习任务(点分类、图分类和相似性搜索)中取得了与监督训练的从头开始的网络相当的性能。

论文来源

https://arxiv.org/pdf/2006.09963.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值