论文阅读3:《GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training》

KDD,2020

一、 简介

作者观点:类似于NLP中的word2vec,现有的图表示学习方法无法迁移,只能在特定的图结构上学习表示,因此图上的预训练模型被提出,学习好图的初始化结果可针对具体下游任务进行微调。

本文预训练策略:一言以蔽之就是,在不同的图之间进行对比表示学习。

即:对某一节点进行多次采样,如果采样来自同一个图的相同节点,则赋予较大的比重,从而得到较小的损失,反之亦然

举个例子,如下图所示:
在这里插入图片描述
上图中,红色节点的两个子图来自相同的图,作为对比学习的正例,而蓝色节点的子图来来自于其他的图,作为负例。

二、准备工作

1. 节点相似性

  • 邻居相似
    相邻的节点具有相似的特征
  • 结构相似
    不相邻的节点具有相似的局部结构也被认为是相似的
  • 属性相似
    有些图的节点具有属性,例如分子图,因此相同属性的节点更相似

2. 对比学习

这里作者引用两篇对比学习的文章,在此列出来,方便后续深入学习。

Representation learning with contrastive predictive coding
本文作者使用对比学习方法来自于这篇文章:InfoNCE

Unsupervised feature learning via non-parametric instance discrimination

3. 图预训练

  • 基于Skip-gram的模型
    一些受word2vec启发而产生的图embedding方法,例如LINE、DeepWalk、node2vec、metapath2vec,大多基于节点的相似特征,并且不能使用到样本以外的问题。而本文提出的GCC模型是基于结构相似性的,并且能在训练之外的图上进行迁移。
  • Pre-training GNN
    在这篇文章之前,也有一些针对图的预训练文章,这些文章要么使用了图上节点或者边的属性,要么定义了训练任务。
    本文的模型:1)不使用图标签;2)没有需要学习的特征任务。

三、图对比编码(Graph Contrastive Coding, GCC)

1. 图预训练问题

GNN预训练可概括为学习一个映射 f f f,将节点特征表示为一个低维嵌入,它需要满足两个条件:

  • 第一,具有相似局部拓扑结构的节点对应的低维向量尽可能接近;
  • 第二,具有迁移能力,即,训练数据中没出现的节点或图也可以应用GCC表示学习。

2. GCC预训练

预训练任务(pre-training task) s u b g r a p h   i n s t a n c e   d i s c r i m i n a t i o n subgraph \ instance \ discrimination subgraph instance discrimination
学习目标(learning objective)InfoNCE

InfoNCE:
L = − l o g e x p ( q T k + / τ ) ∑ i = 0 K e x p ( q T k i / τ ) L=-log\frac{exp(q^Tk_+/\tau)}{\sum\limits_{i=0}^{K}{exp(q^Tk_i/\tau)}} L=logi=0Kexp(qTki/τ)exp(qTk+/τ)
这里, τ \tau τ是超参数; k + k_+ k+表示与 q q q匹配的正例; k i , i = 0 … K k_i,i=0…K ki,i=0K表示正例与负例的集合。

鉴于上述内容,引入三个问题

  • Q1: How to define subgraph instances in graphs?
  • Q2: How to define (dis)similar instance pairs in and across graph?
  • Q3:What are the proper graph encoders f q f_q fq and f k f_k fk?

回答

  • Q1:Design (subgraph) instances in graphs.

3. GCC微调

待更新……

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值