RealFormer: 残差式 Attention 层的Transformer 模型

本文提出了RealFormer,一种在Transformer结构中引入残差Attention的改进模型,旨在增强模型性能和训练稳定性。RealFormer在预训练和下游任务上均优于Post-LN和Pre-LN结构,尤其是在有限的训练资源下仍能取得优秀效果。通过量化分析,证明了RealFormer的注意力矩阵更稀疏和强关联,有助于正则化和模型的鲁棒性。
摘要由CSDN通过智能技术生成

©原创作者 | 疯狂的Max

01 背景及动机

Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向。

Transformer模型结构中每层都包含着残差结构,而残差结构中最原始的结构设计是Post-LN结构,即把Layer Norm (LN) 放在每个子层处理之后,如下图Figure 1(a)所示;而其他的一些预训练模型如GPT-2,则将LN改到每个子层处理之前,被定义为Pre-LN,如下图Figure 1(b),有论文[5]结果表明“Pre-LN”对梯度下降更加友好,收敛更快,更易于超参优化,但其性能总差于“Post-LN”。

为解决这个问题,本文作者提出 RealFormer 模型(Residual Attention Layer Transformer),如下图Figure 1(c)所示,将残差结构运用到attention层,使得模型对训练超参更具鲁棒性的同时,保证模型性能的提升。

而残差结构来源于图像领域经典的Resnet模型[6],可以有效解决深层神经网络中的梯度弥散/扩散和网络退化的问题[7],NLP领域Transformer经典结构[2]同图像领域模型一样,也拥有“窄而深”的模型,因此也当然可以通过残差结构来达到优化网络的目的,这也是Transformer结构中本身就设计了残差结构的原因。

具体来说,RealFormer相较于前面提到的两种结构(“Pre-LN”和“Post-LN”)不同在于,模型在每层中计算所有头的attention score时,加上了残差结构,即本层的attention score加上之前层的attention score。

值得注意的是,直接在attention计算时增加跳连连接并不会增加指数级的运算量,因此其效率是相对可观的。

本文的主要贡献在于:

1)RealFormer是一种在原始Transformer结构上的简单改进,只需要修改几行代码并且不需要过多的超参调整;

2)RealFormer的表现在不同规模的模型上都优于Post-LN和Pre-LN结构的模型;

3)RealFormer在包括GLUE在内的各种下游任务中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP论文解读

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值