yoloworld推理、微调训练、数据制作,V8对比

对yoloworld输出数据做后处理

YOLO-World(实时开放词汇对象检测) -Ultralytics YOLO 文档

先说结论:v8预处理、推理、后处理耗时:48,48.5,14.3world:5.3,84.7,92.4;在map50-95,world优于v8

推理

from ultralytics import YOLOWorld  
  
# Initialize a YOLO-World model  
model = YOLOWorld('yolov8s-world.pt')

# 指定类检测
# model.set_classes(["person", "bus"])
# 保存指定了类的权重,之后只检测该类
# model.save("custom_yolov8s.pt")

# Execute inference with the YOLOv8s-world on the specified image  
results = model.predict('D:\model\YOLO-World-master\point.jpg', conf=0.7)

boxes = results[0].boxes.cpu().numpy
det = boxes.data.cpu().numpy()    # 这里面有[x,y,x,y,conf,class]
# print(boxes.shape)
# Show results  
# results[0].show()
results[0].save("result.jpg")

这是results,是一个列表

我们获取到result下的boxes对象

训练

from ultralytics import YOLOWorld

if __name__ == '__main__':
    # Load a pretrained YOLOv8s-worldv2 model
    model = YOLOWorld("/data/zy/YOLO-World-master/weights/yolov8s-world.pt")
    # Train the model on the COCO8 example dataset for 100 epochs,参数和v8一样
    results = model.train(data="/data/zy/YOLO-World-master/cifanban/data.yaml", 
                          epochs=100, 
                          imgsz=640,
                          device="0,1,2,3",
                          batch=32,
                          save_period=50,  # 多少轮保存一个模型(-1 不保存)
                          project="project/guizhouyiwu/train",
                          name="train214_02")

data得yaml文件制作

world后续看心情更新,但是多模态大模型学习相关的会持续更新

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值