对yoloworld输出数据做后处理
YOLO-World(实时开放词汇对象检测) -Ultralytics YOLO 文档
先说结论:v8预处理、推理、后处理耗时:48,48.5,14.3world:5.3,84.7,92.4;在map50-95,world优于v8
推理
from ultralytics import YOLOWorld
# Initialize a YOLO-World model
model = YOLOWorld('yolov8s-world.pt')
# 指定类检测
# model.set_classes(["person", "bus"])
# 保存指定了类的权重,之后只检测该类
# model.save("custom_yolov8s.pt")
# Execute inference with the YOLOv8s-world on the specified image
results = model.predict('D:\model\YOLO-World-master\point.jpg', conf=0.7)
boxes = results[0].boxes.cpu().numpy
det = boxes.data.cpu().numpy() # 这里面有[x,y,x,y,conf,class]
# print(boxes.shape)
# Show results
# results[0].show()
results[0].save("result.jpg")
这是results,是一个列表
我们获取到result下的boxes对象
训练
from ultralytics import YOLOWorld
if __name__ == '__main__':
# Load a pretrained YOLOv8s-worldv2 model
model = YOLOWorld("/data/zy/YOLO-World-master/weights/yolov8s-world.pt")
# Train the model on the COCO8 example dataset for 100 epochs,参数和v8一样
results = model.train(data="/data/zy/YOLO-World-master/cifanban/data.yaml",
epochs=100,
imgsz=640,
device="0,1,2,3",
batch=32,
save_period=50, # 多少轮保存一个模型(-1 不保存)
project="project/guizhouyiwu/train",
name="train214_02")
data得yaml文件制作
world后续看心情更新,但是多模态大模型学习相关的会持续更新