全都初始化为 0
偏差初始化陷阱: 都初始化为 0。
产生陷阱原因:因为并不知道在训练神经网络中每一个权重最后的值,但是如果进行了恰当的数据归一化后,我们可以有理由认为有一半的权重是正的,另一半是负的。令所有权重都初始化为 0,如果神经网络计算出来的输出值是一样的,神经网络在进行反向传播算法计算出来的梯度值也一样,并且参数更新值也一样。更一般地说,如果权重初始化为同一个值,网络就是对称的。
形象化理解:在神经网络中考虑梯度下降的时候,设想你在爬山,但身处直线形的山谷中,两边是对称的山峰。由于对称性,你所在之处的梯度只能沿着山谷的方向,不会指向山峰;你走了一步之后,情况依然不变。结果就是你只能收敛到山谷中的一个极大值,而走不到山峰上去。
全都初始化为同样的值
偏差初始化陷阱: 都初始化为一样的值。
如果每个权重都一样,那么在多层网络中,从第二层开始,每一层的输入值都是相同的了也就是$ a1=a2=a3=.... $,既然都一样,就相当于一个输入了,为啥呢??
如果是反向传递算法可以看出所得到的梯度下降法的偏导相同,不停的迭代,不停的相同,不停的迭代,不停的相同......,最后就得到了相同的值(权重和截距)。
初始化为小的随机数
将权重初始化为很小的数字是一个普遍的打破网络对称性的解决办法。这个想法是