最“小”生成树例题POJ 2377 Bad Cowtractors

题目链接        http://poj.org/problem?id=2377

题目描述 :

有N个结点 M条边 并且知道每条边的权值

要建一个连接满足

(i)这些连接的总成本尽可能大

(ii)所有谷仓都连接在一起

(iii)使连接之间没有循环

很明显可以看出就是一个最原始的最小生成树,只不过这个权值最“小”变成了权值最大。(这个一定要注意)。

下面基于最小生成树的2种算法Prim 和 Kruskal给出2套解答(其实这就是个模版题)

Prim思想 —— “最优邻居一定在MST上”的贪心

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;

//一些习惯的简化
#define el '\n'
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define lop(i, a, b) for(int i = (a); i <  (b); i++)
#define dwn(i, a, b) for(int i = (a); i >= (b); i--)
#define ms(a, b) memset(a, b, sizeof(a))

const int MAXN = 1100;
const int INF = 0x3f3f3f3f;

int n, m;
struct edge{
    int from, to;
    int c;
}temp;
vector<edge> e[MAXN];
struct node{//定义大顶堆
    int id, dist;
    node(int a, int b){id = a, dist = b;}
    bool operator<(const node & a)const{
        return dist < a.dist;
    }
};
int prim(int star){
    int ans = 0;
    int cnt = 0;
    int dis[MAXN];//离已构成树的最大距离
    bool vis[MAXN];//标记是否已连成树
    priority_queue<node> Q; //大顶堆优先队列
    rep(i, 0, n){
        dis[i] = 0;
        vis[i] = false;
    }
    Q.push(node(star, 0));
    while(!Q.empty()){
        int u = Q.top().id;
        if(vis[u]){
            Q.pop();
            continue;
        }
        //cout << Q.top().id << " " << Q.top().dist << el << el;;
        ans += Q.top().dist;
        Q.pop();
        vis[u] = true;
        cnt++;
        if(cnt == n)//n个结点已全部连成树
            return ans;
        lop(i, 0, e[u].size()){
            int v = e[u][i].to, c = e[u][i].c;
            if(dis[v] < c && !vis[v])  {//这里与最小生成树有所不同要特别注意
                dis[v] = c;
                //cout << v << " " << dis[v] << el << el;
                Q.push(node(v, dis[v]));
            }
        }
    }
    return -1;//图不连通等问题,无法连成树
}
int main(){
    cin >> n >> m;
    rep(i, 1, m){//输入数据
        int a, b, c;
        cin >> a >> b >> c;
        temp.to = b, temp.c = c;
        e[a].push_back(temp);
        temp.to = a;
        e[b].push_back(temp);
    }
    cout << prim(1);
    return 0;
}

Kruskal —— “最优边一定在MST上的”贪心

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;

//一些习惯的简化
#define el '\n'
#define rep(i, a, b) for(int i = (a); i <= (b); i++)
#define lop(i, a, b) for(int i = (a); i <  (b); i++)
#define dwn(i, a, b) for(int i = (a); i >= (b); i--)
#define ms(a, b) memset(a, b, sizeof(a))

const int MAXN = 1100;
const int INF = 0x3f3f3f3f;

int n, m;
int fa[MAXN];//记录祖先结点
struct edge{
    int x, y;//一条边接的两个点,无向边
    int c;
    bool operator>(const edge &a) const{
        return c > a.c;
    }
}e[MAXN * MAXN];
int find(int x){
    return x == fa[x] ? x : find(fa[x]);//路径压缩
}
void join(int x, int y){
    int x_root = find(x), y_root = find(y);
    if(x_root != y_root)
        fa[x_root] = y_root;//并集
}
int Kruskal(){//查并集 + 对边排序
    int cnt = 0;
    int ans = 0;
    rep(i, 1, n){
        fa[i] = i;
    }
    sort(e + 1, e + m + 1, greater<edge>());
    rep(i, 1, m){
        int u = e[i].x, v = e[i].y;
        if(find(u) == find(v))
            continue;
        ans += e[i].c;
        cnt++;
        if(cnt == n - 1)
            return ans;
        join(u, v);
    }
    return -1;
}
int main(){
    cin >> n >> m;
    rep(i, 1, m){//输入数据
        int a, b, c;
        cin >> a >> b >> c;
        e[i].x = a, e[i].y = b, e[i].c = c;//实际上这种算法不用管起点终点
    }
    cout << Kruskal();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值