任何推荐系统都要经历数据从无到有,从简单到丰富的过程。在某个特定场景下,对一个新用户而言,如何推荐其可能喜欢的物品,对于一个新物品而言,如何找到其受众,在推荐系统中被称为冷启动问题。
书中提到,“冷启动”分为三种:
1. 用户冷启动
2. 物品冷启动
3. 系统冷启动
主流的冷启动方案
1. 基于规则的冷启动
基于人工制定的某些规则来实现冷启动过程。例如对新用户推荐“热门”、“最新”,对某个地方的用户推荐编排好的内容,对新物品采用相似推荐的方法。
2. 丰富冷启动过程中可获得的用户特征和物品特征
丰富模型的用户特征和物品特征,使其在缺乏用户历史行为特征的时候,可以完成粗粒度的推荐。对用户而言,可增加其人口画像特征及外部合作数据,对物品而言,可增加其内容特征,例如颜色,标签,风格等。
3. 主动学习、迁移学习、探索与利用(Exploration and Exploitation)
主动学习、迁移学习这里略过。
探索与利用,在推荐系统中也称为EE问题,是计算广告和推荐系统里最常见的两大问题之一(另外一个是冷启动问题)。EE 问题中的利用(Exploitation),表示对用户比较确定的兴趣,要利用开采迎合;而探索(Exploration)则表示光对着用户已知的兴趣使用,用户很快会腻,所以要不断探索用户新的兴趣才行。
关于EE问题的参考资料:
https://lumingdong.cn/exploration-and-exploitation-in-the-recommendation-system.html