- 博客(102)
- 资源 (2)
- 收藏
- 关注
原创 线性代数:矩阵的四大子空间之“行空间”和“列空间”
在矩阵的四大子空间中,行空间和列空间是两个核心概念,分别描述了矩阵的行和列所张成的向量空间。行空间和列空间通过矩阵的秩相连,二者的维度(秩)相同,反映了矩阵的线性独立性和信息内容。
2024-11-23 14:20:35
2826
原创 线性代数:空间的维度
从整个欧几里得空间来说,想知道一个空间的维度为多少,只需要找到空间中的一组基,看这一组基的向量个数是多少,就可以说这个空间对应的维度就是这组基的向量的个数。
2024-11-23 14:09:57
1311
原创 线性代数:欧几里德空间的子空间(子空间释义)
假设V是一个向量空间,如果S是V的子集,且S还是一个向量空间,则称S是V的一个子空间。子空间的典型应用场景是降维操作降维操作,在高维数据所在的空间内找到一个子空间,使得这些数据在子空间中也能很好的找到它们所对应的位置,同时信息并没丢失,这样一个维度更低的子空间,意味着更加简单和方便研究,数据运算量更少对应的计算时间更短。
2024-11-23 00:00:26
1639
原创 线性代数:空间的定义(欧几里得空间&向量空间)
欧几里得空间本质是有序实数有理数和无理数总称为实数元组的集合,其中有序实数是指按照一定顺序排列的实数表示一定的意义,改变它们的位置,则表示的意义不同。
2024-11-22 13:20:55
2048
原创 线性代数:线性组合与线性相关
一组向量线性相关,表示这组向量出现了信息冗余,因为一个向量可以被另一个向量的线性组合所表示,意味着这个向量本身其实并没有表达新的信息。反之,一组向量线性无关,意味着信息完全不冗余,对于这组向量来说所有向量都是独立的。
2024-11-22 13:07:29
1476
原创 线性代数:矩阵的分解(LU分解n阶方阵)
矩阵的LU分解是一种将矩阵拆解为两个部分的分解方法,其中一个是下三角矩阵,另一个是上三角矩阵。这种分解可以用于快速求解线性方程组、计算矩阵行列式和逆矩阵。LU分解通过逐步消去矩阵中的元素,将问题简化为更易处理的形式,适用于方阵,且对稀疏矩阵的效率尤为显著。
2024-11-22 12:57:25
1388
原创 线性代数:矩阵可逆的重要性
矩阵可逆意味着:矩阵A是非奇异矩阵;齐次线性系统Ax=0有唯一解,且这个解为零解;矩阵A的行最简形式为I;矩阵A可以表示为一些列初等矩阵的乘积
2024-11-22 12:49:43
780
原创 线性代数:单位矩阵与逆矩阵
在矩阵系统中,大量的矩阵不存在逆矩阵,但总体而言,可逆矩阵在矩阵系统中还是居多的,只是相比不可逆矩阵而言少的多,因此可逆矩也称为非奇异矩阵,以表明其是不平凡的。
2024-11-22 11:24:51
1685
原创 线性代数:矩阵的概念与基本运算
向量 是对数的拓展,一个向量代表的是一组数;矩阵 是对向量的拓展,一个矩阵代表的是一组向量。应用于数据记录表,系统,变换函数和空间。当矩阵 表示对一个系统的描述,因为系统可以通过方程组描述系统内成员变量的关系,方程组构成系统的描述矩阵,通过方程式可以求解系统的最优解。
2024-11-22 11:17:11
1754
原创 线性代数:向量点乘的意义
在参考坐标系的基向量上的投影的乘积,当基向量互相垂直的情况下,两向量的不同属性的分量(如。解决不同方向向量间存在的方向问题,不同方向的向量直接乘运算是没有意义的。向量的点乘结果反映在分量上是向量间同属性分量的乘积的和,如。应用领域如推荐系统,商品,电影,音乐的推荐。可以用来衡量两个向量的相似程度()的相乘是无意义的,分量间的夹角。,所以不同属分量乘积是0。主要用来计算向量间的夹角。
2024-11-22 11:13:50
1551
原创 线性代数:向量的模与单位向量
N维向量:在自然科学领域,有时一个单纯数量就可以量化某个物理量,如体积能够直观反映物体占用的空间大小。就是从坐标原点(零向量本身)出发又指向零向量,所以零向量不是一个有向线段,它依然是一个点。:表征从一个点出发到另一个点的相应的结果,并不描述得到相应结果的过程差异(如起始点的不同),当在一个空间证明出了这个向量的存在,才称这个向量为零向量。线性代数的重点在于其推广一个数的研究到一组数的研究。(类比数轴,实数的值都是相对数轴上的0的距离的描述)。含义向量的大小,也就是向量的长度(或称模),向量。
2024-11-22 11:12:00
1444
原创 Seurat v4 与 v5 数据整合工作流的技术差异说明
随着近年来 Seurat 团队的不断更新,该分析框架已经发展到了 v5 版本。相较于之前的版本,Seurat v5 在数据结构和分析方法上都进行了许多重要的调整和改进。本帖收集了一些资料特别对新旧版本的数据整合工作流之间的一些差异进行了汇总。
2024-09-04 11:11:32
1980
原创 Spateo基于SSDNA圈细胞操作指南
Spateo 提供了创新性方法来使用细胞核染色图像或 RNA 信号来实现单细胞分割。当使用高分辨率空间转录组学分析时,例如 BGI 的 Stereo-seq,每个细胞都被许多像素格捕获(对于 Stereo-seq,大约 400 个)。这使我们能够从相邻的像素格聚合 UMI 以执行单细胞分割,最终产生细胞 x 基因的RNA表达矩阵,就像单细胞 RNA-seq (scRNA-seq) 分析一样。...
2022-08-04 16:12:27
2052
1
原创 Linux下conda环境安装指定版本GCC编译器编译phylocom-4.2软件记录
Linux下conda环境配置不同的版本GCC编译器套件,gcc编译器版本问题导致的-fno-plt参数异常解决,gcc库缺失问题"cannot find -lgcc_s"解决。
2022-07-20 22:05:30
4611
原创 ggplot-geom_point 散点图添加聚类标签
本篇分享在ggplot的散点聚类图中,为每个类群添加标签Label的方法,方法通过kmeans方法计算每个簇的中心,给每个簇的中心点添加Class_label实现每个簇的标签标记。
2022-07-07 18:19:39
2043
原创 R语言-data.table包用来加速大型数据集的加载和运算
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点是快。它内部处理的步骤进行了程序上的优化,使用多线程,还有很多C编写的函数,大大加快数据运行速度。尤其当对一两百万甚至更大数据集进行修改或运算时,由于data.table直接对数据本身做运算,不创建副本,因此相较于基本的data.frame格式,data.table在面对大型数据集时,进行聚合排序以及分组运算的性能非常高 !............
2022-07-07 00:48:49
2113
原创 Linux 下用R语言打开hdf5(.h5)文件异常的解决方案
Error in H5File.open(filename, mode, file_create_pl, file_access_pl) :
2022-07-01 22:18:08
4491
原创 差异基因通路富集分析的统计学假设
单细胞转录谱可以根据基因表达水平进行差异分析,通过差异分析,我们可以知道不同分群之间是否存在差异,以及存在显著表达量差异的基因集(DEG,在单细胞Seurat分析流程中,通过Seurat::FindAllMarkers()方法计算得到簇间的过表达差异基因)。进一步,探究这些DEG是由哪些生物学过程介导的,我们的实验处理影响了哪些生物学过程。理解这些DEG所代表的生物学意义的最佳途径就是基因富集分析(Gene Set Enrichment Analysis, GSEA)。...
2022-06-29 21:39:05
1816
原创 R语言-超大型数据框与稀疏矩阵的切片-处理as.matrix方法的“problem too large”异常
R语言-超大型数据框与稀疏矩阵的切片-处理as.matrix方法的“problem too large”异常
2022-06-27 18:41:17
1188
原创 dplyr-as.numeric保留行名转换数据框(矩阵)的所有字符型列向量为数值型
dplyr-as.numeric保留行名转换数据框(矩阵)的所有字符型列向量为数值型
2022-06-26 13:14:06
5222
1
基因组坐标转换链文件(chain): 人类Human (GRCh38/hg38)映射到猕猴Crab-eating macaque(Macaca-fascicularis-5.0/macFas5)
2025-08-21
基因组坐标转换链文件(chain): 猕猴Crab-eating macaque(Macaca-fascicularis-5.0/macFas5)映射到人类Human (GRCh38/hg38)
2025-08-21
R语言软件包 SNPlocs.Hsapiens.dbSNP144.GRCh37
2023-11-14
spateo 离线安装包
2022-07-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅