1、空间的基的概念
若
m
m
m个向量生成
n
n
n维
v
⃗
1
,
v
⃗
2
,
v
⃗
3
,
⋯
,
v
⃗
m
\vec v_{1},\ \vec v_{2},\ \vec v_{3},\cdots,\ \vec v_{m}
v1, v2, v3,⋯, vm空间,
m
m
m最小是为
n
n
n;
若
m
>
n
m > n
m>n,则
v
⃗
1
,
v
⃗
2
,
v
⃗
3
,
⋯
,
v
⃗
m
\vec v_{1},\ \vec v_{2},\ \vec v_{3},\cdots,\ \vec v_{m}
v1, v2, v3,⋯, vm线性相关;
若
m
m
m个
n
n
n维向量线性无关,
m
m
m最大为
n
n
n。
理解线性无关
:
\color {skyblue} { \small理解线性无关:}
理解线性无关:
求证线性无关等价于求证是否存在一组全为的系数
k
,
使得
k
1
⋅
v
⃗
1
+
k
2
⋅
v
⃗
2
+
k
3
⋅
v
⃗
3
+
⋯
+
k
m
⋅
v
⃗
m
=
0
⇔
转而判断
m
个
n
维向量组成的系数矩阵
A
⋅
k
⃗
=
0
有唯一零解
\color {skyblue} {\small 求证线性无关 等价于求证是否存在一组全为的系数k,使得k_{1} \cdot \vec v_{1} + \ k_{2} \cdot \vec v_{2} + \ k_{3} \cdot \vec v_{3} + \cdots + \ k_{m} \cdot \vec v_{m} = 0\Leftrightarrow 转而判断m个n维向量组成的系数矩阵 A \cdot \vec k = 0 有唯一零解}
求证线性无关等价于求证是否存在一组全为的系数k,使得k1⋅v1+ k2⋅v2+ k3⋅v3+⋯+ km⋅vm=0⇔转而判断m个n维向量组成的系数矩阵A⋅k=0有唯一零解
m
个不共线的
n
维向量组成的线性系统
A
⋅
k
⃗
=
0
,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得
m
个
(
m
<
n
)
个
n
维向量线性无关
\color {skyblue} { \small m个不共线的n维向量组成的线性系统A\cdot \vec k =0,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得m个(m < n)个n维向量线性无关}
m个不共线的n维向量组成的线性系统A⋅k=0,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得m个(m<n)个n维向量线性无关
若一组向量可以生成整个 n n n维空间,且线性无关,这组向量一定有 n n n个,则称这组向量为这个 n n n维空间的一组 基 ( b a s e s ) \color {red} {基(bases)} 基(bases)
因为可以生成整个 n n n维空间的 n n n个线性无关的 n n n维向量可以有无数组,所以一个空间可以有无数组基。
从一个低维空间–二维空间来看待空间的基
在二维空间中,任取两个不共线的向量 u ⃗ \vec u u和 v ⃗ \vec v v,它们就是二维空间的一组基,任意第三个向量都可以表示为 u ⃗ \vec u u和 v ⃗ \vec v v的线性组合。
基可以理解为一个初等数学接触的坐标系概念, e ⃗ 1 , e ⃗ 2 \vec e_{1},\vec e_{2} e1,e2是二维空间一组坐标系, u ⃗ , v ⃗ \vec u,\vec v u,v也是一组坐标系,在这些坐标系下都可以观测到二维空间的任意一个点,区别在于不同的坐标系空间中同一个点的表示方式是不一样的。
给定 n n n维空间的一组基,则空间中的任意一个向量都可以表示成这组基的线性组合,且这个向量在这组基下的表示方法唯一。
证明:对 n n n维空间中的任意一个向量 u ⃗ \vec u u,求证是否一定存在一组 k k k,使得:
k 1 ⋅ e ⃗ 1 + k 2 ⋅ e ⃗ 2 + ⋯ + k n ⋅ e ⃗ n = u ⃗ k_{1} \cdot \vec e_{1} + k_{2} \cdot \vec e_{2} + \cdots + k_{n} \cdot \vec e_{n} = \vec u k1⋅e1+k2⋅e2+⋯+kn⋅en=u
等价于求解线性系统: [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋯ ⋯ ⋯ 0 0 ⋯ 1 ] [ k 1 k 2 ⋯ k n ] = [ u 1 u 2 ⋯ u n ] \begin {bmatrix}1&0&\cdots 0\\ 0&1&\cdots 0 \\ \cdots& \cdots&\ \cdots \\ 0&0&\cdots 1 \end {bmatrix} \ \begin {bmatrix} k_{1} \\ k_{2} \\ \cdots \\ k_{n} \end {bmatrix}= \begin {bmatrix} u_{1} \\ u_{2} \\ \cdots \\ u_{n} \end {bmatrix} 10⋯001⋯0⋯0⋯0 ⋯⋯1 k1k2⋯kn = u1u2⋯un
对于这个线性系统,系数矩阵 A A A一定可逆,所以一定有解,且有唯一解 ( A ⋅ x = b → x = A − 1 ⋅ b ) (A \cdot x =b \to x = A^{-1} \cdot b) (A⋅x=b→x=A−1⋅b)
2、空间的基的性质
- n维空间中,任意n个线性无关的向量,一定是这个n维空间的基;
- n维空间中,额如果n个向量可以生成整个空间,则这n个向量,是这个n维空间的基;
- 如果一组向量 v ⃗ 1 , v ⃗ 2 , ⋯ , v ⃗ p \vec v_{1},\vec v_{2},\cdots ,\vec v_{p} v1,v2,⋯,vp可以生成 n n n维空间 ( p ≥ n ) (p \geq n) (p≥n),则这组向量的存在一个子集,是 n n n维空间的一组基。— 该结论表明,很多时候,我们并不需要构造 n n n维空间的一组基如果,当存在 p p p个向量可以生成整个 n n n维空间的时候,只需要从这组向量里挑选出一个包含 n n n个线性无关向量的子集就可以成为这个 n n n维空间的一组基
对于 m m m个线性无关的 n n n维向量,若 m < n m < n m<n,这 m m m个向量无法生成整个空间;降低到三维空间来理解就是,如果只给出两个三维空间的向量 u ⃗ , v ⃗ \vec u,\ \vec v u, v,它们只能形成一个平面,则这两个向量的任意线性组合都在平面上,无法生成不在平面的向量。当 m = n m =n m=n 时, m m m个线性无关的 n n n维向量可以生成整个空间,且可以成为空间的基。当 m > n m >n m>n,此时这 m m m个向量变成线性相关组,可以生成整个空间但不是空间的基。