线性代数:空间的基

1、空间的基的概念

m m m个向量生成 n n n v ⃗ 1 ,   v ⃗ 2 ,   v ⃗ 3 , ⋯   ,   v ⃗ m \vec v_{1},\ \vec v_{2},\ \vec v_{3},\cdots,\ \vec v_{m} v 1, v 2, v 3,, v m空间, m m m最小是为 n n n
m > n m > n m>n,则 v ⃗ 1 ,   v ⃗ 2 ,   v ⃗ 3 , ⋯   ,   v ⃗ m \vec v_{1},\ \vec v_{2},\ \vec v_{3},\cdots,\ \vec v_{m} v 1, v 2, v 3,, v m线性相关;
m m m n n n维向量线性无关, m m m最大为 n n n
理解线性无关 : \color {skyblue} { \small理解线性无关:} 理解线性无关:
求证线性无关等价于求证是否存在一组全为的系数 k , 使得 k 1 ⋅ v ⃗ 1 +   k 2 ⋅ v ⃗ 2 +   k 3 ⋅ v ⃗ 3 + ⋯ +   k m ⋅ v ⃗ m = 0 ⇔ 转而判断 m 个 n 维向量组成的系数矩阵 A ⋅ k ⃗ = 0 有唯一零解 \color {skyblue} {\small 求证线性无关 等价于求证是否存在一组全为的系数k,使得k_{1} \cdot \vec v_{1} + \ k_{2} \cdot \vec v_{2} + \ k_{3} \cdot \vec v_{3} + \cdots + \ k_{m} \cdot \vec v_{m} = 0\Leftrightarrow 转而判断m个n维向量组成的系数矩阵 A \cdot \vec k = 0 有唯一零解} 求证线性无关等价于求证是否存在一组全为的系数k,使得k1v 1+ k2v 2+ k3v 3++ kmv m=0转而判断mn维向量组成的系数矩阵Ak =0有唯一零解
m 个不共线的 n 维向量组成的线性系统 A ⋅ k ⃗ = 0 ,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得 m 个 ( m < n ) 个 n 维向量线性无关 \color {skyblue} { \small m个不共线的n维向量组成的线性系统A\cdot \vec k =0,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得m个(m < n)个n维向量线性无关} m个不共线的n维向量组成的线性系统Ak =0,是一个方程数大于未知数的线性系统,且行阶梯式的非零行个数等于未知数个数,所以有唯一零解,证得m(m<n)n维向量线性无关

若一组向量可以生成整个 n n n维空间,且线性无关,这组向量一定有 n n n个,则称这组向量为这个 n n n维空间的一组 基 ( b a s e s ) \color {red} {基(bases)} (bases)

因为可以生成整个 n n n维空间的 n n n个线性无关的 n n n维向量可以有无数组,所以一个空间可以有无数组基。

从一个低维空间–二维空间来看待空间的基

在二维空间中,任取两个不共线的向量 u ⃗ \vec u u v ⃗ \vec v v ,它们就是二维空间的一组基,任意第三个向量都可以表示为 u ⃗ \vec u u v ⃗ \vec v v 的线性组合。

可以理解为一个初等数学接触的坐标系概念, e ⃗ 1 , e ⃗ 2 \vec e_{1},\vec e_{2} e 1e 2是二维空间一组坐标系, u ⃗ , v ⃗ \vec u,\vec v u v 也是一组坐标系,在这些坐标系下都可以观测到二维空间的任意一个点,区别在于不同的坐标系空间中同一个点的表示方式是不一样的。

给定 n n n维空间的一组基,则空间中的任意一个向量都可以表示成这组基的线性组合,且这个向量在这组基下的表示方法唯一。

证明:对 n n n维空间中的任意一个向量 u ⃗ \vec u u ,求证是否一定存在一组 k k k,使得:
k 1 ⋅ e ⃗ 1 + k 2 ⋅ e ⃗ 2 + ⋯ + k n ⋅ e ⃗ n = u ⃗ k_{1} \cdot \vec e_{1} + k_{2} \cdot \vec e_{2} + \cdots + k_{n} \cdot \vec e_{n} = \vec u k1e 1+k2e 2++kne n=u
等价于求解线性系统: [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋯ ⋯   ⋯ 0 0 ⋯ 1 ]   [ k 1 k 2 ⋯ k n ] = [ u 1 u 2 ⋯ u n ] \begin {bmatrix}1&0&\cdots 0\\ 0&1&\cdots 0 \\ \cdots& \cdots&\ \cdots \\ 0&0&\cdots 1 \end {bmatrix} \ \begin {bmatrix} k_{1} \\ k_{2} \\ \cdots \\ k_{n} \end {bmatrix}= \begin {bmatrix} u_{1} \\ u_{2} \\ \cdots \\ u_{n} \end {bmatrix} 10001000 1   k1k2kn = u1u2un
对于这个线性系统,系数矩阵 A A A一定可逆,所以一定有解,且有唯一解 ( A ⋅ x = b → x = A − 1 ⋅ b ) (A \cdot x =b \to x = A^{-1} \cdot b) (Ax=bx=A1b)

2、空间的基的性质

  • n维空间中,任意n个线性无关的向量,一定是这个n维空间的基;
  • n维空间中,额如果n个向量可以生成整个空间,则这n个向量,是这个n维空间的基;
  • 如果一组向量 v ⃗ 1 , v ⃗ 2 , ⋯   , v ⃗ p \vec v_{1},\vec v_{2},\cdots ,\vec v_{p} v 1,v 2,,v p可以生成 n n n维空间 ( p ≥ n ) (p \geq n) (pn),则这组向量的存在一个子集,是 n n n维空间的一组基。— 该结论表明,很多时候,我们并不需要构造 n n n维空间的一组基如果,当存在 p p p个向量可以生成整个 n n n维空间的时候,只需要从这组向量里挑选出一个包含 n n n个线性无关向量的子集就可以成为这个 n n n维空间的一组基

对于 m m m个线性无关的 n n n维向量,若 m < n m < n m<n,这 m m m个向量无法生成整个空间;降低到三维空间来理解就是,如果只给出两个三维空间的向量 u ⃗ ,   v ⃗ \vec u,\ \vec v u , v ,它们只能形成一个平面,则这两个向量的任意线性组合都在平面上,无法生成不在平面的向量。当 m = n m =n m=n 时, m m m个线性无关的 n n n维向量可以生成整个空间,且可以成为空间的基。当 m > n m >n m>n,此时这 m m m个向量变成线性相关组,可以生成整个空间但不是空间的基。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

倪桦

有帮助的话请杯咖啡吧,谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值