Python常用库之一:Numpy

Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库!

Numpy比Python列表更具优势,其中一个优势便是速度。在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百。因为Numpy数组本身能节省内存,并且Numpy在执行算术、统计和线性代数运算时采用了优化算法。

Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构。Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题。

与Python列表相比,Numpy具有的另一个强大优势是具有大量优化的内置数学函数。这些函数使你能够非常快速地进行各种复杂的数学计算,并且用到很少代码(无需使用复杂的循环),使程序更容易读懂和理解。

注:在ndarray结构中,里面元素必须是同一类型的,如果不是,会自动的向下进行。

Numpy简单创建数组

a = [1, 2, 3]
b = np.array(a)
c = np.array([[0, 1, 2, 10],
              [12, 13, 100, 101],
              [102, 110, 112, 113]], int)
print(c)
print(b)

 

创建数值为1的数组

Numpy.ones(参数 1:shape,数组的形状;参数 2:dtype, 数值类型)

array_one = np.ones([10, 10], dtype=np.int)
print(array_one)

创建数值为0的数组

Numpy.zeros(参数 1:shape,数组的形状;参数 2:dtype, 数值类型)

array_zero = np.zeros([10, 9], dtype=np.float)
print(array_zero)

创建指定数值的数组

Numpy.full(参数 1:shape,数组的形状; 参数 2:constant value,数组填充的常数值;参数 3:dtype, 数值类型)

array_full = np.full((2, 3), 5)
print(array_full)

创建单位矩阵

Numpy.eye(参数 1:N,方阵的维度)

array_eye = np.eye(5)
print(array_eye)

创建对角矩阵

Numpy.diag(参数1:v,主对角线数值,参数 2:k,对角线元素):K = 0表示主对角线,k>0的值选择在主对角线之上的对角线中的元素,k<0的值选择在主对角线之下的对角线中的元素

array_diag = np.diag([10, 20, 30, 40])
print(array_diag)

Numpy查看数组属性

数组元素个数:b.size 或 np.size()

数组形状:b.shape 或 np.shape()

数组维度:b.ndim

数组元素类型:b.dtype

# 数组元素个数:3
print(b.size)
# 数组形状:(3,)
print(b.shape)
# 数组维度:1
print(b.ndim)
# 数组元素类型:int32
print(b.dtype)

矩阵第一维的长度:shape[0]  # 行

矩阵第二维的长度:shape[1]  # 列

.......

array_rand = np.random.rand(10, 10, 4)
print(array_rand)
print(array_rand.ndim)
print(array_rand.shape[0])
print(array_rand.shape[1])
print(array_rand.shape[2])

 

Numpy创建随机数组(np.random)

均匀分布

创建指定形状的数组,数值范围在0~1之间

1 array_rand = np.random.rand(10, 10, 4)
2 print(array_rand)
3 print(array_rand.ndim)

创建指定范围内的一个数:Numpy.random.uniform(low, high, size=None)

1 array_uniform = np.random.uniform(0, 100, size=5)
2 print(array_uniform)

创建指定范围的一个整数:Numpy.random.randint(low, high, size=None)

1 array_int = np.random.randint(0, 100, size=3)
2 print(array_int)
3 print(array_int.size)

Numpy.arange()和Numpy.linspace()函数也可以均匀分布

Numpy.arange(start, stop, step):创建一个秩为1的array,其中包含位于半开区间[start, stop)内并均匀分布的值,step表示两个相邻值之间的差。

Numpy.linspace(start, stop, N):创建N个在闭区间[start, stop]内均匀分布的值。

1 X = np.arange(1, 5, 2, dtype=np.int)
2 print(X)
3 y = np.linspace(1, 5, 3)
4 print(y)

正态分布

创建给定均值、标准差、维度的正态分布:Numpy.random.normal(loc, scale, size)

1 # 正态生成4行5列的二位数组
2 array_normal = np.random.normal(loc=1.75, scale=0.1, size=[4, 5])
3 print(array_normal)
4 print(array_normal.ndim)

Numpy数组操作

数组的索引

array[start : end]

array[start:]

array[:end]

布尔型索引:array[array>10 & array<20]

1 # 截取第0至第3行,第2至第4列(从第0行第0列算起)
2 after_array = array_normal[:3, 2:4]
3 print(after_array)

数组的复制

Numpy.copy(参数 1:数组):创建给定array的一个副本,还可当做方法用。

1 after_array = array_normal[:3, 2:4].copy()
2 copy_array = np.copy(array_normal[:, 2:4])

数组排序

Numpy.sort(参数 1:a,数组;参数 2:axis=0/1,0表示行1表示列):np.sort()作为函数使用时,不更改被排序的原始array;array.sort()作为方法使用时,会对原始array修改为排序后数组array

1 # 整体排序
2 np.sort(array_normal)
3 # 仅行排序
4 np.sort(array_normal, axis=0)
5 # 仅列排序
6 np.sort(array_normal, axis=1)

数组唯一元素

Numpy.unique(参数 1:a,数组;参数 2:return_index=True/False,新列表元素在旧列表中的位置;参数 3:return_inverse=True/False,旧列表元素在新列表中的位置;参数 4:return_counts,元素的数量;参数 5:axis=0/1,0表示行1表示列):查找array中的唯一元素。

1 print("提取唯一元素", np.unique(array_normal))
2 print("提取唯一元素", np.unique(array_normal, return_index=True))
3 print("提取唯一元素", np.unique(array_normal, return_counts=True))
4 print("提取唯一元素", np.unique(array_normal, return_index=True, return_inverse=True, axis=0))

数组的改变

数组转置

1 array_normal.T

 

reshape():把指定的数组改变形状,但是元素个数不变;有返回值,即不对原始多维数组进行修改

 

 1 c = np.array([[[0, 1, 2],
 2                [10, 12, 13]],
 3               [[100, 101, 102],
 4                [110, 112, 113]]])
 5 """
 6 [[[  0   1]
 7   [  2  10]]
 8 
 9  [[ 12  13]
10   [100 101]]
11 
12  [[102 110]
13   [112 113]]]
14 """
15 print(c.reshape(3, 2, 2))
16 """
17 [[  0   1   2  10]
18  [ 12  13 100 101]
19  [102 110 112 113]]
20 """
21 # 某一维指定为-1时,自动计算维度
22 print(c.reshape(3, -1))
23 """[[[  0   1]
24     [  2  10]
25     [ 12  13]]
26     
27     [[100 101]
28     [102 110]
29     [112 113]]]"""
30 print(c.reshape(2, -1, 2))

 

 

resize():把指定的数组改变形状,但是元素个数可变,不足补0;无返回值,即对原始多维数组进行修改

 

 1 a = np.array([[[0, 1, 2],
 2                [10, 12, 13]],
 3               [[100, 101, 102],
 4                [110, 112, 113]]])
 5 b = np.array([[[0, 1, 2],
 6                [10, 12, 13]],
 7               [[100, 101, 102],
 8                [110, 112, 113]]])
 9 '''[[0]
10     [1]
11     [2]]'''
12 a.resize((3, 1))
13 '''[[  0   1   2  10  12]
14     [ 13 100 101 102 110]
15     [112 113   0   0   0]]'''
16 b.resize((3, 5))
17 print(a)
18 print(b)

 

*Numpy计算

条件运算

Numpy.where(condition, x, y):三目运算满足condition,为x;不满足condition,则为y

1 score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
2 # 如果数值小于80,替换为0,如果大于等于80,替换为90
3 re_score = np.where(score < 80, 0, 90)
4 print(re_score)

统计运算

指定轴最大值:amax(参数1:数组;参数2:axis=0/1,0表示行1表示列)

 

1 # 求整个矩阵的最大值
2 result = np.amax(score)
3 print(result)
4 # 求每一列的最大值(0表示行)
5 result = np.amax(score, axis=0)
6 print(result)
7 # 求每一行的最大值(1表示列)
8 result = np.amax(score, axis=1)
9 print(result)

 

指定轴最小值:amin(参数1:数组;参数2:axis=0/1,0表示行1表示列)

 

1 # 求整个矩阵的最小值
2 result = np.amin(score)
3 print(result)
4 # 求每一列的最小值(0表示行)
5 result = np.amin(score, axis=0)
6 print(result)
7 # 求每一行的最小值(1表示列)
8 result = np.amin(score, axis=1)
9 print(result)

 

指定轴平均值:mean(参数1:数组;参数2:axis=0/1,0表示行1表示列;参数3:dtype,输出数据类型)

 

1 # 求整个矩阵的平均值
2 result = np.mean(score, dtype=np.int)
3 print(result)
4 # 求每一列的平均值(0表示行)
5 result = np.mean(score, axis=0)
6 print(result)
7 # 求每一行的平均值(1表示列)
8 result = np.mean(score, axis=1)
9 print(result)

 

指定轴方差:std(参数1:数组;参数2:axis=0/1,0表示行1表示列;参数3:dtype,输出数据类型)

 

1 # 求整个矩阵的方差
2 result = np.std(score)
3 print(result)
4 # 求每一列的方差(0表示列)
5 result = np.std(score, axis=0)
6 print(result)
7 # 求每一行的方差(1表示行)
8 result = np.std(score, axis=1)
9 print(result)

 

类似的,求和:Numpy.sum(),求中值:Numpy.median

数组运算

数组与数的运算(加、减、乘、除、取整、取模)

 

 1 # 循环数组行和列,每一个数值都加5
 2 score[:, :] = score[:, :]+5
 3 print(score)
 4 # 循环数组行和列,每一个数值都减5
 5 score[:, :] = score[:, :]-5
 6 print(score)
 7 # 循环数组行和列,每一个数值都乘以5
 8 score[:, :] = score[:, :]*5
 9 print(score)
10 # 循环数组行和列,每一个数值都除以5
11 score[:, :] = score[:, :]/5
12 print(score)
13 # 循环数组行和列,每一个数值除以5取整
14 score[:, :] = score[:, :] // 5
15 print(score)
16 # 循环数组行和列,每一个数值除以5取模
17 score[:, :] = score[:, :] % 5
18 print(score)

 

数组间运算(加、减、乘、除),前提是两个数组的shape一样

加:“+”或者np.add(a, b)  减:“-”或者np.subtract(a, b)  

乘:“*”或者np.multiply(a, b)  除:“/”或者np.divide(a, b)

1 c = score + score
2 d = score - score
3 e = score * score
4 # 分母数组保证每个数值不能为0
5 b = score / score

Numpy.intersect1d(参数 1:数组a;参数 2:数组b):查找两个数组中的相同元素

Numpy.setdiff1d(参数 1:数组a;参数 2:数组b):查找在数组a中不在数组b中的元素

Numpy.union1d(参数 1:数组a;参数 2:数组b):查找两个数组的并集元素

矩阵运算(一种特殊的二维数组)

计算规则

(M行,N列)*(N行,Z列)=(M行,Z列)

1 st_score = np.array([[80, 88], [82, 81], [84, 75], [86, 83], [75, 81]])
2 # 平时成绩占40% 期末成绩占60%, 计算结果
3 q = np.array([[0.4], [0.6]])
4 result = np.dot(st_score, q)
5 print(result)

矩阵拼接

矩阵垂直拼接(前提两个两个矩阵列数相同,行数随意):vstack(参数:tuple)

 

1 v1 = [[0, 1, 2, 3, 4, 5],
2       [6, 7, 8, 9, 10, 11]]
3 v2 = [[12, 13, 14, 15, 16, 17],
4       [18, 19, 20, 21, 22, 23],
5       [18, 19, 20, 21, 22, 23]]
6 result = np.vstack((v1, v2))
7 print(result)

 

矩阵水平拼接(前提两个两个矩阵行数相同,列数随意):hstack(参数:tuple)

1 v1 = [[0, 1, 2, 3, 4, 5],
2       [6, 7, 8, 9, 10, 11]]
3 v2 = [[12, 13, 14, 15, 16, 17],
4       [18, 19, 20, 21, 22, 23]]
5 result = np.hstack((v1, v2))
6 print(result)

 矩阵删除:Numpy.delete(参数 1:a,数组;参数 2:elements,删除的对象;参数 3:axis=0/1)

1 OriginalY = np.array([[1, 2, 3],
2                      [4, 5, 6],
3                      [7, 8, 9]])
4 print(np.delete(OriginalY, [0, 2]))
5 print(np.delete(OriginalY, [0, 2], axis=0))
6 print(np.delete(OriginalY, [0, 2], axis=1))

矩阵添加:Numpy.append(参数 1:array,数组;参数 2: elements,添加元素;参数 3: axis=0/1)

 

1 OriginalY = np.array([[1, 2, 3],
2                      [4, 5, 6],
3                      [7, 8, 9]])
4 # 末尾添加元素
5 print(np.append(OriginalY, [0, 2]))
6 # 最后一行添加一行
7 print(np.append(OriginalY, [[0, 2, 11]], axis=0))
8 # 最后一列添加一列(注意添加元素格式)
9 print(np.append(OriginalY, [[0], [2], [11]], axis=1))

 

矩阵插入:Numpy.insert(参数 1:array,数组;参数 2:index,插入位置索引;参数 3: elements,添加元素;参数 4: axis=0/1)

 

1 OriginalY = np.array([[1, 2, 3],
2                      [4, 5, 6],
3                      [7, 8, 9]])
4 print(np.insert(OriginalY, 1, [11, 12, 10]))
5 print(np.insert(OriginalY, 1, [[11, 12, 10]], axis=0))
6 # 在列索引1的位置插入(注意元素格式,跟添加格式不同)
7 print(np.insert(OriginalY, 1, [[11, 12, 10]], axis=1))

 

 文件加载

np.loadtxt(fname,dtype,comments='#',delimiter=None,skiprows=0,usecols=None)

fname:读取的文件、文件名

dtype:数据类型

comments:注释

delimiter:分隔符,默认是空格

skiprows:跳过前几行读取,默认是0

usecols:读取哪些列,usecols=(1, 2, 5)读取第1,2,5列,默认所有列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值