晶体塑形自学1—大变形

引言

如下图所示,变形前后构型发生变化,当变化足够下,就可以忽略初始构型和变形后构型的区别,即小变形假设。

而大变形,更准确的说是有限变形,就是在描述应力和应变时考虑构型变化的影响。

小变形假设下,名义应力 p \bm{p} p 约等于 真应力 σ \bm{\sigma} σ
[ p 11 0 0 p 22 ] ≈ [ σ 11 0 0 σ 22 ] \left[ \begin{matrix}p_{11}&0\\0& p_{22} \end{matrix}\right]\approx \left[ \begin{matrix}\sigma_{11}&0\\0& \sigma_{22} \end{matrix}\right] [p1100p22][σ1100σ22]

有限变形下,端面合力保持不变
[ p 11 0 0 p 22 ] = [ 1 + ϵ 22 0 0 1 + ϵ 11 ] [ σ 11 0 0 σ 22 ] \left[ \begin{matrix}p_{11}&0\\0& p_{22} \end{matrix}\right]=\left[ \begin{matrix}1+\epsilon_{22}&0\\0& 1+\epsilon_{11} \end{matrix}\right]\left[ \begin{matrix}\sigma_{11}&0\\0& \sigma_{22} \end{matrix}\right] [p1100p22]=[1+ϵ22001+ϵ11][σ1100σ22]

考虑构型变化后,不能再认为两个应力相同。

应变度量

1、 变形梯度(二维): F = [ ∂ x ∂ X ∂ x ∂ Y ∂ y ∂ X ∂ y ∂ Y ] \bm{F}=\large{\left[ \begin{matrix} \frac{\partial x}{\partial X}& \frac{\partial x}{\partial Y}\\\quad\\ \frac{\partial y}{\partial X}& \frac{\partial y}{\partial Y}\\ \end{matrix}\right]} F=XxXyYxYy
F F F 的行列式用 J J J 表示: J = d e t ( F ) J=det(F) J=det(F) J J J 是微元的体积变化(变化后的体积比上初始的体积)。

名义应变: ϵ = F T − I \bm{\epsilon=F^T-I} ϵ=FTI (含旋转的话为非对称张量)

名义应变率:
ϵ ˙ = F ˙ T = [ ∂ v x ∂ X ∂ v y ∂ X ∂ v x ∂ Y ∂ v y ∂ Y ] \dot\bm{\epsilon}=\dot\bm{F}^T=\large{\left[ \begin{matrix} \frac{\partial v_x}{\partial X}& \frac{\partial v_y}{\partial X}\\\quad\\ \frac{\partial v_x}{\partial Y}& \frac{\partial v_y}{\partial Y}\\ \end{matrix}\right]} ϵ˙=F˙T=XvxYvxXvyYvy

2、Green应变张量 E E E 定义:
d s 2 − d S 2 = 2 d X ⋅ E ⋅ d X ds^2-dS^2 =2d\bm{X}\cdot \bm{E} \cdot d\bm{X} ds2dS2=2dXEdX
材料矢量 d X d\bm{X} dX 长度平方的变化。
\quad
其中: d s 2 = d x T ⋅ d x d S 2 = d X T ⋅ d X ds^2=d\bm{x}^T\cdot d\bm{x} \quad dS^2=d\bm{X}^T\cdot d\bm{X} ds2=dxTdxdS2=dXTdX
d x T ⋅ d x − d X T ⋅ d X = ( F ⋅ d X ) T ⋅ ( F ⋅ d X ) − d X T ⋅ d X = d X T ⋅ F T ⋅ F ⋅ d X − d X T ⋅ I ⋅ d X = d X T ⋅ ( F T ⋅ F − I ) ⋅ d X \begin{aligned} d\bm{x}^T\cdot d\bm{x} -d\bm{X}^T\cdot d\bm{X} &=(\bm{F} \cdot d\bm{X})^T\cdot (\bm{F} \cdot d\bm{X})-d\bm{X}^T\cdot d\bm{X}\\\quad\\ &= d\bm{X}^T \cdot \bm{F}^T\cdot \bm{F} \cdot d\bm{X}-d\bm{X}^T\cdot \bm{I} \cdot d\bm{X}\\\quad \\&=d\bm{X}^T \cdot (\bm{F}^T\cdot \bm{F}-\bm{I}) \cdot d\bm{X} \end{aligned} dxTdxdXTdX=(FdX)T(FdX)dXTdX=dXTFTFdXdXTIdX=dXT(FTFI)dX
因此 E = 1 2 ( F T ⋅ F − I ) \bm{E}=\frac{1}{2}(\bm{F}^T\cdot \bm{F}-\bm{I}) E=21(FTFI) E i j = 1 2 ( F i k F k j − δ i j ) {E_{ij}}=\frac{1}{2}({F_{ik}}{F_{kj}}-\delta_{ij}) Eij=21(FikFkjδij)

3、 变形率

变形率 D D D ,也称为速度应变,是变形的率度量。

首先,定义速度梯度 L \bm{L} L:
L = ∂ v ∂ x = ( ▽ v ) T = ( g r a d   v ) T 或 L i j = ∂ v i ∂ x j \bm{L}=\frac{\partial \bm{v}}{\partial x}=\left(\bigtriangledown \bm{v} \right)^T=\left(grad\ \bm{v}\right)^T \quad 或\quad L_{ij}=\frac{\partial v_i}{\partial x_j} L=xv=(v)T=(grad v)TLij=xjvi
L = ∂ v ∂ x = ∂ v ∂ X ∂ X ∂ x = F ˙ ⋅ F − 1 或 L i j = F ˙ i k F k j − 1 \bm{L}=\frac{\partial \bm{v}}{\partial x}=\frac{\partial \bm{v}}{\partial \bm{X}} \frac{\partial \bm{X}}{\partial \bm{x}}=\bm{\dot{F}}\cdot\bm{F}^{-1} \quad 或\quad L_{ij}=\dot{F}_{ik}F_{kj}^{-1} L=xv=XvxX=F˙F1Lij=F˙ikFkj1
速度梯度张量可分解为对称部分 D \bm{D} D 和反对称部分 W \bm{W} W
D = 1 2 ( L + L T ) 或 D i j = 1 2 ( ∂ v i ∂ x j + ∂ v j ∂ x i ) \bm{D}=\frac{1}{2}\left(\bm{L}+\bm{L}^T\right)\quad 或\quad D_{ij}=\frac{1}{2}\left(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i}\right) D=21(L+LT)Dij=21(xjvi+xivj)
W = 1 2 ( L − L T ) 或 W i j = 1 2 ( ∂ v i ∂ x j − ∂ v j ∂ x i ) \bm{W}=\frac{1}{2}\left(\bm{L}-\bm{L}^T\right)\quad 或\quad W_{ij}=\frac{1}{2}\left(\frac{\partial v_i}{\partial x_j}-\frac{\partial v_j}{\partial x_i}\right) W=21(LLT)Wij=21(xjvixivj)
变形率是微小材料线段平方的变化率的度量:
∂ ∂ t ( d s 2 ) = ∂ ∂ t ( d x T ⋅ d x ) = ( d v T ⋅ d x ) + ( d x T ⋅ d v ) = ( ( L ⋅ d x ) T ⋅ d x ) + ( d x T ⋅ ( L ⋅ d x ) ) = ( d x T ⋅ L T ⋅ d x ) + ( d x T ⋅ L ⋅ d x ) = 2 ( d x T ⋅ D ⋅ d x ) \begin{aligned} \frac{\partial}{\partial t}(ds^2)&=\frac{\partial}{\partial t}(d\bm{x}^T\cdot d\bm{x})=(d\bm{v}^T\cdot d\bm{x})+(d\bm{x}^T\cdot d\bm{v})\\\quad\\ &=((\bm{L}\cdot d\bm{x})^T\cdot d\bm{x})+(d\bm{x}^T\cdot (\bm{L} \cdot d\bm{x}))\\\quad\\ &=(d\bm{x}^T\cdot\bm{L}^T\cdot d\bm{x})+(d\bm{x}^T\cdot \bm{L} \cdot d\bm{x})\\\quad\\ &=2(d\bm{x}^T\cdot\bm{D}\cdot d\bm{x}) \end{aligned} t(ds2)=t(dxTdx)=(dvTdx)+(dxTdv)=((Ldx)Tdx)+(dxT(Ldx))=(dxTLTdx)+(dxTLdx)=2(dxTDdx)

4、Green应变率与变形率
E ˙ = 1 2 ( F ˙ T ⋅ F + F T ⋅ F ˙ ) \dot\bm{E}=\frac{1}{2}(\dot\bm{F}^T\cdot \bm{F}+\bm{F}^T\cdot \dot\bm{F}) E˙=21(F˙TF+FTF˙)
D = 1 2 ( F ˙ T ⋅ F − 1 + F − T ⋅ F ˙ ) \bm{D}=\frac{1}{2}(\dot\bm{F}^T\cdot \bm{F}^{-1}+\bm{F}^{-T}\cdot \dot\bm{F}) D=21(F˙TF1+FTF˙)
因此:
E ˙ = ( F T ⋅ D ⋅ F ) 或 D = ( F ⋅ D ⋅ F T ) \dot\bm{E}=(\bm{F}^T\cdot \bm{D}\cdot \bm{F})\quad 或\quad \bm{D}=(\bm{F}\cdot \bm{D}\cdot \bm{F}^T) E˙=(FTDFD=(FDFT
由此可知: E ˙ \dot\bm{E} E˙ D \bm{D} D是同一个张量分别在初始构型上和当前构型上的分量。

计算不同应变率度量下外力对微元做功的功率

即,应力和应变率的共轭关系

外力对微元做功的功率表示为: W ˙ \dot{W} W˙

已知名义应力乘以名义应变率在初始构型上积分等于功率:
W ˙ = p : ϵ ˙ T d V = p : F ˙ T d V = F ˙ : p T d V \dot{W}=\bm{p:\dot\epsilon}^TdV=\bm{p:\dot F^T}dV=\bm{\dot F:p^T}dV W˙=p:ϵ˙TdV=p:F˙TdV=F˙:pTdV

把应变率张量换成变形率 D D D:
W ˙ = F − T ⋅ W ˙ ⋅ F T d V = F − T ⋅ F ˙ : p T ⋅ F T d V = F ⋅ p : F − T ⋅ F ˙ d V \dot{W}=\bm{F}^{-T}\cdot\dot{W}\cdot\bm{F}^{T}dV=\bm{F}^{-T}\cdot\bm{\dot F:p^T}\cdot\bm{F}^{T}dV=\bm{F}\cdot\bm{p}:\bm{F}^{-T}\cdot\bm{\dot F}dV W˙=FTW˙FTdV=FTF˙:pTFTdV=Fp:FTF˙dV
W ˙ = F ⋅ W ˙ ⋅ F − 1 d V = F ⋅ p : F ˙ T ⋅ F − 1 d V \dot{W}=\bm{F}\cdot\dot{W}\cdot\bm{F}^{-1}dV=\bm{F}\cdot\bm{p:\dot F^T}\cdot\bm{F}^{-1}dV W˙=FW˙F1dV=Fp:F˙TF1dV
因此:
W ˙ = 1 2 F ⋅ p : ( F ˙ T ⋅ F − 1 + F − T ⋅ F ˙ ) d V = F ⋅ p : D d V = F ⋅ p : D J − 1 d v \dot{W}=\frac{1}{2}\bm{F}\cdot\bm{p}:\left(\bm{\dot F^T}\cdot\bm{F}^{-1}+\bm{F}^{-T}\cdot\bm{\dot F}\right)dV\\\quad\\ =\bm{F}\cdot\bm{p}:\bm{D}dV=\bm{F}\cdot\bm{p}:\bm{D}J^{-1}dv W˙=21Fp:(F˙TF1+FTF˙)dV=Fp:DdV=Fp:DJ1dv

定义: σ = J − 1 F ⋅ p \bm{\sigma}=J^{-1}\bm{F}\cdot \bm{p} σ=J1Fp(Cauchy应力,真应力); τ = J σ = F ⋅ p \bm{\tau}=J\bm{\sigma}=\bm{F}\cdot \bm{p} τ=Jσ=Fp(Kirchhoff应力)

注:1、 W ˙ \dot{W} W˙ 是标量,计算时可以交换位置;2、 d v = J d V dv=JdV dv=JdV

同理,应变率张量换位Green应变率 E ˙ \dot{E} E˙:
W ˙ = p ⋅ F − T : E ˙ d V = S : E ˙ d V \dot{W}=\bm{p}\cdot\bm{F}^{-T}:\dot\bm{E}dV=\bm{S}:\dot\bm{E}dV W˙=pFT:E˙dV=S:E˙dV
其中: S S S 为第二Piola-Kirchhoff应力

客观应力率

最朴素的本构关系:应力=模量矩阵×应变,所以,应力增量=模量矩阵×应变增量。由于应变中不包含旋转,所以通过模量矩阵×应变增量求出的应力增量也不能包含旋转。

旋转造成的应力增量:

纯旋转 σ ^ X \bm{\hat\sigma_X} σ^X的分量 σ X i j \sigma_{X_{ij}} σXij σ x \bm{\sigma_x} σx 的分量 σ i j \sigma_{ij} σij 相同

σ X − σ ^ X Δ t = σ X − R ⋅ σ X ⋅ R T Δ t = ∂ ( R ⋅ σ X ⋅ R T ) ∂ R ∂ R ∂ t = R ˙ ⋅ σ X ⋅ R T + R ⋅ σ X ⋅ R ˙ T = R ˙ ⋅ R T ⋅ σ x ⋅ R ⋅ R T + R ⋅ R T ⋅ σ x ⋅ R R ˙ T = σ x ⋅ Ω T + Ω ⋅ σ x \begin{aligned} \bm{\frac{\sigma_X-\hat\sigma_X}{\Delta t}}&=\bm{\frac{\sigma_X-R\cdot\sigma_X\cdot R^T}{\Delta t}}\\ &=\bm{\frac{\partial(R\cdot\sigma_X\cdot R^T)}{\partial R}}\bm{\frac{\partial R}{\partial t}}\\ &=\bm{\dot R\cdot\sigma_X\cdot R^T}+\bm{R\cdot\sigma_X\cdot \dot R^T}\\ &=\bm{\dot R\cdot R^T\cdot\sigma_x\cdot R\cdot R^T}+\bm{R\cdot R^T\cdot\sigma_x\cdot R\dot R^T}\\ &=\bm{\sigma_x\cdot \Omega^T+ \Omega\cdot\sigma_x} \end{aligned} ΔtσXσ^X=ΔtσXRσXRT=R(RσXRT)tR=R˙σXRT+RσXR˙T=R˙RTσxRRT+RRTσxRR˙T=σxΩT+Ωσx
其中: Ω = R ˙ ⋅ R T \bm{\Omega=\dot R \cdot R^T} Ω=R˙RT 角速度张量

由此推出Green-Naghdi客观应力率:
σ ∇ G = D σ D t − σ ⋅ Ω T − Ω ⋅ σ 或 σ i j ∇ G = D σ i j D t + σ i k Ω k j − Ω i k σ k j \bm{\sigma^{\nabla G}}=\frac{D\bm{\sigma}}{Dt}-\bm{\sigma \cdot \Omega^T- \Omega\cdot\sigma}\quad 或\quad {\sigma^{\nabla G}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}+{\sigma_{ik}\Omega_{kj}- \Omega_{ik}\sigma_{kj}} σG=DtDσσΩTΩσσijG=DtDσij+σikΩkjΩikσkj
其中: Ω \bm{\Omega} Ω为反对称阵, Ω T = − Ω \bm{\Omega}^T=-\bm{\Omega} ΩT=Ω
纯旋转下,速度梯度矩阵=转动矩阵(速度梯度矩阵的反对称部分)=角速度矩阵 L = W = Ω \bm{L=W=\Omega} L=W=Ω,用转动矩阵代替角速度矩阵得到Jaunmann客观应力率:
σ ∇ J = D σ D t − σ ⋅ W T − W ⋅ σ 或 σ i j ∇ G = D σ i j D t + σ i k W k j − W j k σ k i \bm{\sigma^{\nabla J}}=\frac{D\bm{\sigma}}{Dt}-\bm{\sigma \cdot W^T- W\cdot\sigma}\quad 或\quad {\sigma^{\nabla G}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}+{\sigma_{ik}W_{kj}- W_{jk}\sigma_{ki}} σJ=DtDσσWTWσσijG=DtDσij+σikWkjWjkσki
用速度梯度矩阵代替角速度矩阵,由于速度梯度矩阵中含有变形量需要扣除,Truesdell客观应力率:
σ ∇ T = D σ D t − d i v ( v ) σ − σ ⋅ L T − L ⋅ σ 或 σ i j ∇ T = D σ i j D t − ∂ v k ∂ x k σ i j + σ i k L k j − L j k σ k i \bm{\sigma^{\nabla T}}=\frac{D\bm{\sigma}}{Dt}-\bm{div(v)\sigma}-\bm{\sigma \cdot L^T- L\cdot\sigma}\\\quad\\ 或\quad {\sigma^{\nabla T}_{ij}}=\frac{D{\sigma_{ij}}}{Dt}-\frac{\partial v_k}{\partial x_k}\sigma_{ij}+{\sigma_{ik}L_{kj}- L_{jk}\sigma_{ki}} σT=DtDσdiv(v)σσLTLσσijT=DtDσijxkvkσij+σikLkjLjkσki

参考书

  1. 《Nonlinear Finite Elements for Continua and Structures》 点击下载
  2. 《塑性细观力学》 王自强
  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值